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ABSTRACT. A key issue for mathematics education is how children can be supported in
shifting from ‘because it looks right’ or ‘because it works in these cases’ to convincing
arguments which work in general. In geometry, forms of software usually known as dy-
namic geometry environments may be useful as they can enable students to interact with
geometrical theory. Yet the meanings that students gain of deductive reasoning through
experience with such software is likely to be shaped, not only by the tasks they tackle
and their interactions with their teacher and with other students, but also by features of
the software environment. In order to try to illuminate this latter phenomenon, and to
determine the longer-term influence of using such software, this paper reports on data
from a longitudinal study of 12-year-old students’ interpretations of geometrical objects
and relationships when using dynamic geometry software. The focus of the paper is the
progressive mathematisation of the student’s sense of the software, examining their inter-
pretations and using the explanations that students give of the geometrical properties of
various quadrilaterals that they construct as one indicator of this. The research suggests
that the students’ explanations can evolve from imprecise, ‘everyday’ expressions, through
reasoning that is overtly mediated by the software environment, to mathematical explan-
ations of the geometric situation that transcend the particular tool being used. This latter
stage, it is suggested, should help to provide a foundation on which to build further notions
of deductive reasoning in mathematics.

KEY WORDS: appropriation of learning, computer environments, deductive reasoning,
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INTRODUCTION

Providing a meaningful experience of deductive reasoning for students at
the school level appears to be difficult. A range of research has documented
that even after considerable teaching input, many students fail to see a need
for deductive proving and/or are unable to distinguish between different
forms of mathematical reasoning such as explanation, argument, verifica-
tion and proof (for recent reviews see Hanna and Jahnke, 1996; Dreyfus,
1999). Amongst the reasons put forward for these student difficulties are
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that learning to prove requires the co-ordination of a range of competen-
cies each of which is, individually, far from trivial (Hoyles, 1997), that
teaching approaches often tend to concentrate on verification and devalue
or omit exploration and explanation (de Villiers, 1998), and that learning
to prove involves students making the difficult transition from a computa-
tional view of mathematics to a view that conceives of mathematics as a
field of intricately related structures (Dreyfus, 1999).

Despite the sheer complexity of learning to reason deductively in math-
ematics, and the wealth of evidence suggesting how difficult it can be
for students, there are studies that show that students can learn to argue
mathematically. Research by, for instance, Maher and Martino (1996) and
Zack (1997) at the elementary school level, and by Dreyfus and Hadas
(1996) and by Boero and colleagues (for example, Boero et al., 1996)
at the high school level, illustrate how students can develop elements of
deductive argument and how these notions of proving can depend on the
classroom ethos, the tasks the students tackle, and the form of interac-
tions that take place between the students and between the teacher and
the students, as well as the tools available to the students. It is because
of the complex nature of the interactions between these elements that, as
Dreyfus (1999) concludes, much remains unknown about how students’
mathematical deductive reasoning evolves and changes.

In geometry, an area of the curriculum intimately connected with the
development of the deductive method, computer software packages gener-
ally known as dynamic geometry environments (DGEs) appear to have
the potential to provide students with direct experience of geometrical
theory and thereby break down what can be an unfortunate separation
between geometrical construction and deduction (for a review see Chazan
and Yerushalmy, 1998, p.72–77). As such, student use of a DGE could
have an important role to play in enabling students to formulate deductive
explanations and provide a foundation for developing ideas of proof and
proving. Concerns remain, however, that the opportunity afforded by the
software of testing a myriad of diagrams through use of the ‘drag’ function
provided by the DGE, or of confirming conjectures through measurements
(that also adjust as the figure is dragged), may reduce the perceived need
for deductive proof (Chazan, 1993; Laborde, 1993; Hanna, 1998; Hoyles
and Jones, 1998). If students are to gain facility with the deductive method
through experience with a DGE then a particularly important issue is the
impact that using such software has on the interpretation that students give
to the geometrical objects they encounter in this way and how they learn to
express explanations and verifications of geometrical theorems, properties
and classifications (see Laborde and Laborde, 1995; Hoyles 1995).
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Much previous research with dynamic geometry environments has quite
properly focused on students in upper secondary (senior high) school where
the students have received considerable teaching input in plane geometry,
including the proving of elementary theorems, but may be new to the
particular software tool. What is less clear at the moment is what impact
the use of dynamic geometry software has on students in lower secondary
(junior high) school where students have limited experience of the formal
aspects of geometry but where contact with geometrical theory through the
software may be especially valuable in providing a foundation for further
work on developing deductive reasoning. At the moment too few students
successfully make the transition to more formal mathematical study in
which proof and proving are central. The aim of the study reported in this
paper is to contribute to what is known about enabling more students to
successfully make this transition.

In order to try to illuminate the impact of using such software, and to
determine the longer-term influence, this paper reports an analysis of data
taken from a longitudinal study (see Jones, 1996, 1997, 1998) of lower
secondary (junior high) school students (aged 12 years old) learning as-
pects of geometry in a particular DGE, in this case Cabri-géomètre version
1.7 (Baulac et al., 1988). The focus of the paper is the progressive math-
ematisation (see below) of the students’ sense of the software, reporting
their interpretations and using explanations that the students give of the
geometrical properties of the figures they construct as one indicator of this.

In this paper, an explanation is taken to be “that which explains, makes
clear or accounts for” (see the Oxford English Dictionary, 1989) and veri-
fication is taken as “demonstration of the truth or correctness by fact or
circumstances” (op.cit.). In terms of mathematics, and following Balacheff
(1988a: 2), a mathematical explanation is taken as “the discourse of an
individual intending to establish for somebody else the validity of a [math-
ematical] statement”. In addition, and where these terms are used, a proof
is “an explanation which is accepted by a community at a given time”,
and a mathematical proof is “a proof accepted by mathematicians” (again
following Balacheff).

The analysis of the data from the longitudinal study that is reported
in this paper focuses on the students’ interpretations, especially the ap-
propriation of mathematical terminology for explaining within geometric
contexts as this is mediated through the dynamic geometry environment.
As Edwards (1997, p. 188) explains, “in order to effectively support the
teaching of proof with meaning, we must understand how students learn
to reason, how they come to perceive and describe mathematical patterns,
how generalizations and mathematical arguments are constructed, and how
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these processes can be supported in the learner” (emphasis in original).
This paper concentrates on how the students reason about geometrical ob-
jects and relations as they experience them through the dynamic geometry
environment and how the mathematical explanations they offer evolve as
they become more experienced both with geometry and with the software.

STUDENT INTERPRETATIONS OF DYNAMIC GEOMETRY

ENVIRONMENTS

In this section a brief outline is given of some of the research findings
about how students interpret geometrical objects and relations when using
dynamic geometry software. In general, as Goldenberg and Cuoco (1998)
observe, as yet much remains unknown about how students glean geo-
metric ideas from the complexly moving figures that they can encounter
with a DGE. What is known is that the computer environment affects the
actions that are possible when solving problems (a task solved using dy-
namic geometry software may require different strategies to the same task
solved with paper and pencil) and it affects the feedback that is provided
to the user (see Laborde, 1992, 1993a, 1993b). The DGE also introduces a
specific criterion of validation for the solution of a construction problem: a
solution is valid if and only if it is not possible to “mess it up” by dragging
(to use the expression adopted by Healy et al., 1994, see also Noss et al.,
1994), or, in other words, that there is “robustness of a figure under drag”
(as used by Balacheff and Sutherland, 1994, p. 147). This criterion of val-
idation does not depend on the perceptive appearance of the product of the
construction as this appearance can be modified using the drag facility. To
pass this ‘drag test’ the figure has to be constructed in such a way that it is
consistent with geometrical theory.

Laborde (1993a, p.49) highlights an important distinction between draw-
ing and figure: “drawing refers to the material entity while figure refers to
a theoretical object”. In terms of a dynamic geometry package, a drawing
can be a juxtaposition of geometrical objects resembling closely the inten-
ded construction (something that can be made to ‘look right’). In contrast, a
figure additionally captures the relationships between the objects in such a
way that the figure is invariant when any basic object used in the construc-
tion is dragged (in other words, that it passes the drag test). Hölzl (1995,
1996) found that learners can get ‘stuck’ somewhere between a drawing
and a figure. He suggests that this relates to the fact that in a DGE such
as Cabri-géomètre the verification process is controlled by the drag mode.
He suggests that the more powerful the computer tool, the more didactic
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efforts are needed to provoke pupils to focus on the relevant mathematical
relationships.

A further open question at the moment is how students can distinguish
fundamental characteristics of geometry from features that are the result
of the particular design of the DGE. As Balacheff (1996, p. 7) demon-
strates with respect to Cabri-géomètre, the sequential organisation of ac-
tions necessary to produce a figure in Cabri introduces an explicit order
of construction where, for most users, order is not normally expected or
does not even matter. For example, Cabri-géomètre induces an orientation
on objects: a segment AB is orientated because A is created before B.
This probably makes sense in a direct manipulation environment, but it is
contradictory to the fact that in paper-and-pencil these objects have no ori-
entation – unless it is explicitly stated. In a complex figure this sequential
organisation produces what is, in effect, a hierarchy of dependencies as
each part of the construction depends on something created earlier. Hoyles
(1995, p. 208) identifies this as a potential source of confusion in Cabri-
géomètre as any hierarchy of relationships which has been established
cannot then be modified (without undoing much that has been done, or
even starting the whole construction again).

When observing young students attempting to construct a rectangle us-
ing the dynamic geometry software package Cabri, Hölzl et al. (1994, p.
11) found that, in order to make any progress with such a task, the stu-
dents had to come to terms with “the very essence of Cabri; that a figure
consists of relationships and that there is a hierarchy of dependencies”
(emphasis in original). An example of this hierarchy of dependencies is
the difference (in Cabri1 for the PC) between basic point, point on object
and point of intersection. While all three types of point look identical on
the screen, basic points and points on objects are moveable (with obvious
restrictions on the latter). Yet a point of intersection cannot be dragged.
This is because a point of intersection depends on the position of the basic
objects which intersect. Only the basic objects (such as basic points, lines,
etc.) used in a construction can be dragged. Dependent objects, such as
points of intersection, only move as a consequence of their dependency on
these basic objects. From their study, Hölzl et al. conclude that students
need to develop an awareness of such functional dependency if they are to
be successful with non-trivial geometrical construction tasks when using
dynamic geometry software. Such an idea as functional dependency is,
within the dynamic geometry environment, intimately connected with the
notion of the robustness of a figure under drag mentioned above. Given
the complexities involved, Hölzl et al. report that “not surprisingly, the
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idea of functional dependency has proved difficult [for students] to grasp”
(op.cit.).

The above suggests that if DGEs are to be useful resources for helping
to build a foundation for deductive reasoning for younger students then it is
important to know what interpretations these students make of geometrical
objects and relations experienced through a DGE. Of particular importance
is their sense of ‘drawing’ and ‘figure’ (following the work of Laborde and
of Hölzl) and of the nature of geometrical objects and relations, especially
the notion of dependency. The next section gives a concise outline of the
theoretical underpinning of the study reported in this paper.

THEORETICAL UNDERPINNING

In addition to a consideration of the previous research carried out with
dynamic geometry software, some of which is referred to above, the theor-
etical framework used to locate and inform the design, implementation and
analysis of the empirical component of the overall longitudinal study, from
which the data reported in this paper is taken, is derived from research in
the following areas:

a) Theoretical models of the teaching and learning of geometrical con-
cepts, especially the van Hiele model (see, for example, van Hiele,
1986; Fuys et al., 1988),

b) Theoretical perspectives on the teaching and learning of deductive
reasoning, especially the work of Balacheff (1988a and b), de Villiers
(1990, 1998), and Hanna (1990, 1998),

c) Sociocultural perspectives on learning, especially the work of Wertsch
(1991, 1998),

d) Theoretical perspectives on the role of technological tools in the learn-
ing process, especially the work of Pea (1987, 1993),

e) Theoretical perspectives on mathematisation, including the work of
Gattegno (1988) and Wheeler (1982) together with, in a fairly restric-
ted sense, aspects of mathematisation in work in the realistic math-
ematics education (RME) paradigm, for example, Treffers (1987).

This paper is mostly concerned with the latter theoretical component, the
notion of mathematisation, which is dealt with in more detail below. The
main features of the other theoretical positions, as they relate to this par-
ticular study, are as follows. The van Hiele model provides a background
framing for the study, especially as transitions between the van Hiele levels
are thought to be critical psychological shifts with important implications
for further learning. For example, in the van Hiele model the shift from
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level 2 (identifying geometrical figures by their properties, which are seen
as independent) to level 3 (recognising that a geometrical property of a
figure precedes or follows from other properties), and subsequent progress
within level 3, is especially important as these lay the foundations for full
deductive proving in van Hiele level 4. The available evidence is that such
progress made by school students is slow, with few students progressing
beyond level 2, even by the end of secondary (high) school (Senk, 1989).
In terms of the use of dynamic geometry software, an in-depth case-study
of a single grade 6 student suggests that using such software may help
students to progress to the higher van Hiele levels (Choi koh, 1999). When
examining students’ deductive reasoning and proving processes, Balacheff
(1988b: 216–218) found it useful to distinguish between what he called
“pragmatic proofs”, which are “those having recourse to actual actions or
showings”, and “conceptual proofs”, which “do not involve action and rest
on formulations of the properties in question and relations between them”.
In terms of what is learnt and how it is learnt, from the perspective of
sociocultural theory the assumption is that using a tool such as a dynamic
geometry package does not serve simply to facilitate mental processes that
would otherwise exist. Instead, use of the software is thought to funda-
mentally shape and transform the mental processes of the users (see Jones,
1998; Mariotti and Bartolini Bussi, 1998; and, for a more general discus-
sion of semiotic mediation, Bartolini Bussi and Mariotti, 1999). Finally,
following from this and using the terminology of Pea (1987, 1993), explor-
atory software environments in mathematics education, of which dynamic
geometry is an example, can be said to act as cognitive reorganisers rather
than merely amplifiers of existing human capabilities.

As noted above, this paper mostly uses (a somewhat specialised version
of) the notion of mathematisation, and, indeed, progressive mathemat-
isation (an idea taken from Treffers, 1987, see below). Mathematisation,
following Gattegno (op.cit.) and Wheeler (op.cit.) involves a range of pro-
cesses and facilities such as the ability to perceive relationships and to
idealise them into purely mental material, the capacity to internalise ac-
tions and such like (so as to ask “What would happen if?”), and the ability
to transform along a number of dimensions, such as from actions to percep-
tions and from images to concepts. Most often it is used when looking at a
‘real’ situation (as in the RME tradition), abstracting from it those elements
that are wanted for closer study (or that appear to be tractable), setting a
mathematical model, making inferences within the model, checking to see
whether the results in the model are bourne out by observation and ex-
periments, tinkering with the model to make it approximate reality better,
and so on. Progressive mathematisation, as defined by Treffers (op.cit.),
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is the process whereby mathematical models are developed through the
successive positioning of contexts that embody the underlying structure of
the concepts.

These ideas of mathematisation, and progressive mathematisation, are
used in this paper in the following sense. In tackling tasks involving ele-
mentary school geometry using dynamic geometry software, students can
be said to be involved in modelling the geometrical situation using the tools
available in the software. This involves setting up a construction and seeing
if it is appropriate, and quite probably having to adjust the construction
to fit the specification of the problem (producing a ‘figure’, rather then a
‘drawing’, in the sense of Laborde, above). For the purposes of this paper,
this is taken as a form of mathematisation. When the tasks the students are
tackling are linked in some way, such as involving the properties of quad-
rilaterals (with a focus on the relationship between such properties), this
mathematisation process becomes more like a process of progressive math-
ematisation as the students develop a sense of the underlying relationships
between the geometric properties.

In the next section the precise methodology is described. Overall, the
research design follows the example of Meira in focusing on how “in-
structional artifacts and representational systems are actually used and
transformed by students in activity” (Meira, 1995, p. 103, emphasis in
original) rather than solely asking whether the students learn particular
aspects of geometry better by using a tool such as a DGE when compared
to using other tools (such as ruler and compass). The reason for this is that
the focus of interest is both what the students learn and how they learn it.

RESEARCH DESIGN

The empirical work for this study was designed to be carried out in the
UK and, following Hoyles (1997), the design was informed by the struc-
ture of the mathematics curriculum experienced by students in the UK.
As Hoyles describes, while formal proof is likely to be restricted in the
UK to the most able students only (and probably only encountered by
students in upper secondary school), the curriculum does provide for op-
portunities for conjecturing and presenting generalisations at all levels.
In terms of geometry, the curriculum attempts to incorporate aspects of
the following geometries: plane, analytic/co-ordinate, and transformation.
Such curriculum considerations mean that students in lower secondary
(junior high) school typically know, for example, some of the properties
of certain geometrical figures, have some experience of conjecturing and
describing observations in open-ended problem situations, but have not
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been introduced to the formal aspects of proof and proving. In terms of
experience with computer environments, students typically have followed
an information technology course, which means they have some facility
with using the computer mouse, menu items, and computer files.

The geometrical topic chosen as most suitable for the empirical study
was the classifying of quadrilaterals. There were two main reasons for this
decision. First, in terms of the ‘family of quadrilaterals’, there has been
both discussion about the classification of quadrilaterals (for example, de
Villiers 1994), and research involving students’ ability to classify them,
including both research using the van Hiele model (for instance, Fuys et
al., 1988), and research involving pupils using the mathematical program-
ming environment Logo (see Hoyles and Noss, 1992, for a comprehensive
review). As de Villiers (1994, p. 11–12) explains, classifying is closely
related to defining (and vice versa) and classifications can be hierarch-
ical (by using inclusive definitions, such as a trapezium or trapezoid is a
quadrilateral with at least one pair of sides parallel – which means that
a parallelogram is a special form of trapezium) or partitional (by using
exclusive definitions, such as a trapezium is a quadrilateral with only one
pair of sides parallel, which excludes parallelograms from being classi-
fied as a special form of trapezium). In general, in mathematics, inclusive
definitions (and thus hierarchical classifications) are preferred (although it
should be stressed that exclusive definitions and partitional classifications
are certainly not incorrect mathematically, just less useful). De Villiers
(1994, p. 17) quotes from a number of studies (including Fuys et al.,
1988) that have shown very clearly that many students have problems with
the hierarchical classification of quadrilaterals. He suggests that some of
the difficulties “do not necessarily lie with the logic of inclusion as such,
but often with the meaning of the activity, both linguistic and functional:
linguistic in the sense of correctly interpreting the language used for class
inclusions, and functional in the sense of understanding why it is more
useful than a partition classification”. He observes that dynamic geometry
software “offers great potential for conceptually enabling many children
to see and accept the possibility of hierarchical inclusions (for example,
. . . letting them drag the vertices of a dynamic parallelogram . . . to trans-
form it into a rectangle, rhombus or square)”. These comments from de
Villiers, together with a reading of the other work on the classification of
quadrilaterals, informed the precise form of the empirical work described
below.

The second reason for choosing the classifying of quadrilaterals was
more practical than epistemological. It was that one major strand within the
geometry component of the UK mathematics curriculum is understanding
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and using the properties of plane shapes. In the lower secondary years
(ages 11–13), the emphasis on this component of the curriculum moves
from (informally) recognising and sorting geometrical figures towards the
formal definitions required to classify and deduce properties of, and rela-
tions between, such figures. Choosing this topic meant that it fitted with the
school’s programme of study and no special dispensation would be needed
to incorporate the topic (in the UK the curriculum is statutory and special
dispensation is required if a school wishes to vary from it). Choosing a
commonly occurring topic also means that the research findings may be
found useful by practising secondary mathematics teachers.

Wherever possible, design choices were made with a view to the typ-
icality of the setting. The school selected for the empirical work was an
urban comprehensive school whose results in mathematics at age 16 were
at the national average (there is a national system of testing in the UK
that allows such judgements to be made). The mathematics teachers in
the school used a problem-based approach to teaching mathematics and
the students usually worked in pairs or small groups on mathematical
problems and occasionally used computers. Throughout their mathematics
work the students were expected to be able to explain the mathematics they
were doing, either orally or in writing. This meant that work on geometry
using dynamic geometry software would fit with the usual experience of
the students. The classes of 12 year-olds in the school had four 50-minute
mathematics lessons per week.

The particular class of 12 year-olds selected for the research were judged
typical of that suitable for studying the relationships between quadrilater-
als in that they were above-average in mathematics for their age (the school
allocated students to different mathematics classes according to attainment
in mathematics tests). A teaching unit was developed in collaboration with
the teacher of the class that would address the properties of quadrilaterals
and could be accommodated in the regular routine of the class. For most
of the 9 months of the study up to four computers were available in the
classroom. This meant that, as pairs of students took turns in using the
computers, there might be gaps of up to a week between sessions that
any particular pair of students had using the software. During these ‘gaps’
the students undertook other mathematics work, including some geometry
topics involving area and volume, but not directly about the geometric
properties of quadrilaterals. The version of Cabri-géomètre in use was
Cabri I for the PC.

All the students in the class were tested using a van Hiele test (Usiskin,
1982) at the start of the unit of work and on its completion. The teaching
unit was prepared to form three phases, and designed to fit around other
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Figure 1. An example task from phase 1.

mathematics work for the class. During each of the phases, the students
worked in pairs (usually the pairs they worked in for all their mathematics
work).

During phase 1 the students gained preliminary experience with Cabri-
géomètre while working through a short series of tasks involving lines and
circles (see Figure 1 for an example). The aim of the phase was for stu-
dents to acquire familiarity with the software interface and be introduced
to the constraint of robustness of a figure under drag (see Balacheff and
Sutherland, 1994, p. 147). For each task (in phase 1 and in the subsequent
phases) the challenge for the students was to reproduce, using the software,
a figure identical to one provided on paper but which could not be ‘messed
up’ (this phrase suggested by Healy et al., 1994, was used consistently
with the students). Figure 1 shows an example of one of the tasks from
phase 1. The tasks used in each of the three phases of the study were
so designed that to successfully meet the challenge of constructing the
figures so that they are invariant under drag, the students have to analyse
the spatial arrangements (taken as a form of mathematisation) and, as they
are novices with the software, work out how to realise their constructions
in the software environment in such a way that not only does it appear to be
correct visually in a static form but that if any objects (such as points, lines
or circles) used in the construction are dragged, the patterns remain con-
sistent. Following Laborde (1993a, p. 49), the challenge for the students is
to produce a ‘figure’ (which makes use of geometrical relationships) rather
then a ‘drawing’ (which only looks like the required figure and which fails
the dragging test of validity). For most students, phase 1 took up to three
hours of using the software.

Phase 2 of the teaching unit involved the students working through a
series of three tasks that required constructing the following quadrilaterals:
a rhombus, a square, and a kite. Each task contained a visual prompt and
the challenge to construct the figure so that it was invariant under drag and
explain why the figure constructed is a particular quadrilateral. Figure 3
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Figure 2. Visual prompt for constructing a square (task 2, phase 2).

shows the visual prompt the students received for constructing a square
(task 2 in the phase 2 sequence of tasks).

In consonance with the idea of progressive mathematisation, the tasks
in phase 2 were designed with the intention that the students would become
more adept at analysing the geometrical structure provided in the visual
prompt and, by having done this, be able to use this analysis to explain
why the shape was the particular quadrilateral. The sequencing of the tasks
(rhombus, square, kite) was designed with the intention that students might
use approaches and geometrical properties gleaned from solving earlier
tasks in approaching the later ones (including those in phase 3 below).
While, initially, the notion of robustness under drag was introduced as a
challenge to the students, both phase 2 of the teaching unit and phase 3
were designed so that this notion became intimately connected with the
geometrical properties of the quadrilaterals being constructed. In this way
it was intended that the students would come to appreciate, in terms of
geometrical reasoning, the significance of robustness under drag and its
usefulness as a test of the validity of constructions in terms of geometrical
theory. The students took about two hours to complete phase 2 of the
teaching unit.

Phase 3 of the teaching unit involved the students working through a
series of six tasks that involved relationships between various quadrilater-
als: the rhombus and the square, the rectangle and the square, the kite and
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the rhombus, the parallelogram and the trapezium, the rhombus, rectangle
and the parallelogram. Most of the students took up to three hours on
this phase of the teaching unit. For each task, the students were provided
with a visual prompt similar to Figure 2 and the challenge to construct
the figure so that it was invariant under drag and explain why all squares
are rectangles, for example, or why all rectangles are parallelograms. The
reason for this choice of phrase is to investigate the students’ developing
conception of this inclusive mathematical classification.

The sixth and final task of phase 3 asked the students to complete a
hierarchical (inclusive) classification of the ‘family’ of quadrilaterals and
explaining the relationships within this ‘family’ (see Figures 3a and 3b).
In this final task the phrasing used was that a particular quadrilateral (say a
square) was “a special case” of another quadrilateral (in this example, both
of a rhombus and a rectangle). This phrasing was chosen as another way of
expressing inclusive mathematical classification. Through the use of these
different phrasings (that all squares are rectangles, and that a square is
a special case of a rectangle) an attempt was made to take account of
what Hershkowitz (1990, p. 81) calls “the opposing direction inclusion
relationship” between sets and subsets of examples of, say, quadrilaterals,
on the one hand, and the sets and subsets of their attributes on the other
(for example, that the set of squares is included in the set of parallelograms,
which, in turn, is included in the set of quadrilaterals, but the set of critical
attributes of squares includes the set of critical attributes of parallelograms,
which includes the set of critical attributes of quadrilaterals). The impact of
this opposing direction inclusion relationship is that, for example, young
children may not entertain a square as a quadrilateral because a square has
four equal sides while other quadrilaterals do not.

During each phase, efforts were made to keep interventions by the
teacher and the researcher to the following: responses (often in the form
of questions) to student questions, and asking students for explanations.
At times, suggestions were offered when students did not know how to
proceed. The timing and nature of these occasions were noted. Particular
attention was paid to instances when technical geometric terminology was
introduced and used. The nature and impact of the interventions is an
important aspect of the analysis of the data from this study and will be
reported elsewhere. In planning the empirical study it was anticipated that
the nature of the interventions would change during the various phases
of the teaching unit, from ones concerned with aspects of the software in
phase 1, to ones relating the properties of particular quadrilaterals in phase
2, and ones involving the relationships between quadrilaterals in phase 3. A
conscious decision was made to focus the interventions on the geometrical
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properties of the quadrilaterals and not to encourage use of the measuring
tools (such as length and angle) available in the software environment.
Following the theoretical framework and the usual practice of the class
teacher, the nature of the interventions was designed to be consonant with
guided participation in sociocultural activity. As noted above, the norm of
the classroom was for students to provide explanations and for these to be
related to the structure of the problems being tackled.

There were 28 students in the experimental class. Seven pairs of stu-
dents were studied during phase 1 in order to select four pairs for detailed
study during phases 2 and 3. The four pairs of students studied during
phases 2 and 3 were selected both to represent the range of attainment in
the class in terms of the van Hiele levels and on the basis that each pair
worked reasonably well together. The four pairs were as follows:

– Pair A: both students van Hiele level 1–2
– Pair B: one student van Hiele level 1–2, the other level 2
– Pair C: both students van Hiele level 2
– Pair D: one student van Hiele level 2, the other level 2–3

For all the pairs of students studied, the following data was collected:
video and additional audio tape to capture the onscreen work and student-
student and student-teacher interactions, student written work (unaided),
student software files, the ‘history’ of the student constructions using the
software (a feature available with the particular software), and researcher
field-notes.

RESULTS AND ANALYSIS

The analysis presented below focuses on data from two pairs of students,
pairs A and C, chosen because the individuals in each pair were assessed as
being at similar van Hiele levels. According to the van Hiele model, as van
Hiele explains, “each [van Hiele] level has its own linguistic symbols and
its own relations connecting these symbols. A relation which is ‘correct’
at one level can reveal itself to be incorrect at another. Think for example,
of a relation between a square and a rectangle. Two people who reason
at different levels cannot understand each other. Neither can manage to
follow the thought processes of the other” (van Hiele, 1959; as quoted
in Fuys et al., 1988, p. 6). Thus choosing pairs A and C in this paper
means that the analysis can focus more precisely on the interpretations and
explanations of the students without being over-complicated by possible
misunderstandings between the students. In the overall research design,
pairs B and D were chosen in order to examine these inter-student aspects
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in more detail, particularly when one student is more capable (in terms of
the van Hiele levels) than the other. These inter-student aspects are subject
to separate analysis. Suffice to say for this paper that the overall pattern of
development analysed below is typical of that found with all the pairs of
students.

In the analysis the term ‘mathematical reasoning’ is used to denote
logical inference and deduction of a form appropriate to lower second-
ary (junior high) school students (and should not be taken to mean the
use of abstract symbolic notation, truth tables or formal axiomatic proofs,
for example). In the context of this study mathematical reasoning can in-
volve using the properties of shapes to judge the validity of results and
justifying steps in giving explanations for statements. Precision in math-
ematical reasoning is taken to include the use of the mathematical terms
that are appropriate for lower secondary school students, as opposed to
‘everyday’ terms for geometrical objects such as ‘oblong’, ‘diamond’ or
‘oval’. Thus ‘mathematical reasoning’ is taken to mean making reasonably
precise statements and deductions about properties and relationships. Such
reasoning can be quite detailed without necessarily being thorough enough
to be called a proof.

The first part of this section reports on phase 1 of the teaching unit,
focusing in particular on how the students interpreted the notion of the
constraint of robustness of a figure under drag. The second part of the
section reports on the two pairs of students as they work through a series
of tasks that involved constructing various quadrilaterals. The focus is their
interpretations using their evolving mathematical explanations as an indic-
ation of this as they attempt to explain the properties of the quadrilaterals
they construct.

Phase 1 of the teaching unit

Phase 1 of the teaching unit served to introduce the students to the software
and to the constraint of robustness of a figure under drag. In this phase
the students worked through a short series of tasks involving patterns of
interlinking lines and circles (see Figure 1 for an example).

The data from this phase raises several issues about the interpretation
the students made of the software environment. Some of these were fairly
trivial. For example, the distinction between lines (that are infinite) and
line segments – a distinction that these particular students had not met
previously. Other aspects of the software environment took longer for the
students to become accustomed to. The most important were:

1. The aspect of functional dependency as realised in the software whereby
some objects can be dragged while others cannot.
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2. The distinctive properties of points of intersection (which, in Cabri 1,
had to be explicitly created).

3. The sequential organisation required in order to construct a figure that
is robust under drag.

These three aspects relate to phenomena created by the software (and only
relate to geometrical theory in terms of how this theory is realised in the
software) and it is crucial that students recognise this if they are going to
see through the software to the geometry.

For the students in the study reported in this paper, the notion of the
constraint of robustness of a figure under drag became linked with using
points of intersection to try to hold the figure together. To illustrate this,
the extracts below are from the transcribed sessions and written work of
pair C (pseudonyms Heather and Karol). In all the data extracts presented
below, square brackets are used to insert short phrases in order to clarify
the meaning of the extracts. Normal use is made of question marks and
exclamation marks. Short pauses are shown by a series of dots.

On two occasions during session 1 (of phase 1), the students raised
questions and received input from the teacher about dependency and about
points of intersection. On the first occasion the students want to delete a
point. When attempting to do so they get the following message from the
software: ‘Delete this object and its dependents?’. They ask the teacher
what this means. The teacher suggests that they go ahead and delete the
point and see what happens (after reassuring them that they can undo the
delete). The students delete the point and two line segments disappear. This
gives the teacher an opportunity to explicitly refer to dependency:

Teacher: that bit of line depended on that point, and that bit of line did, so they
both went.

[Pair C, session 1 (phase 1)]

Later in the session the students discover that the points of intersection
they have constructed cannot be dragged. Here the teacher again refers to
dependency and explains how points of intersection depend on the other
objects. After a little thought and dragging, one of the students says:

Karol: You can’t drag that point [a point of intersection] because it is dependent
on them [indicating the points used to create the shape].

[Pair C, session 1 (phase 1)]

The other student nods, which appears to indicate that, at this point, the stu-
dents appreciate what is different about points of intersection and how this
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relates to dependency. During the next session, however, there is evidence
that they have developed their own, somewhat different, interpretation.

In session 2, while tackling another task involving lines and circles, the
following exchange takes place:

Karol: What’s the [point of] intersection doing? Does it keep the dot [the point]
there?

Teacher: What you are finding is the point here, where the circle crosses the line.
Karol: Right, so if it was like that [indicating a different arrangement of lines],

then it [the point of intersection] would be there.
Teacher: It is always where the lines cross.

[Pair C, session 2 (phase 1)]

In raising the question about points of intersection, here is a first indication
of the interpretation of the students have of points of intersection. It seems
that Karol may think that such points have a role in ‘holding’ a figure
together so that it is invariant under drag. Later in the session the other
student gives another indication:

Heather: You have to make an intersection between those two lines so that they
can’t be moved.

[Pair C, session 2 (phase 1)]

In this case it is not altogether clear what the student means. However, the
students do successfully complete the tasks for the session and, at the end
of the session, are asked why their figures cannot be ‘messed up’. Heather
replies:

Heather: They stay together because of the intersections.

[Pair C, session 2 (phase 1)]

This statement is not incorrect as it relates to their perspective on robust-
ness under drag, but it also masks another interpretation that is revealed
in the next session. In their third session, the students are in the process
of constructing a rhombus, which they need to ensure is invariant when
any basic point used in its construction is dragged. As they go about con-
structing a number of points of intersection, one of the students comments
spontaneously:

Heather: [referring to a point of intersection] a bit like glue really. It just glued
them together.
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[Pair C, session 3 (phase 2)]

This spontaneous use of the term ‘glue’ to refer to points of intersection
has been observed by other researchers (see, for example, Pratt and Ainley,
1996) and is all the more striking given the fact that earlier on in the lesson
the students had confidently referred to such points as points of intersection
(implying that such points only exist if other geometrical objects intersect).

A little later in the same session, one student in the pair again asks the
teacher why it is not possible to ‘drag’ points of intersection. The teacher
replies:

Teacher: Because the intersection points just show you where two things cross.
Karol: So how come it keeps it together if it’s just a dot to show you where they

cross?
Teacher: You can move that point because it’s the centre of the first circle that

you drew. So if you move that [point], then because you are changing the
size of the first circle, the point where it crosses the other circle changes so
that changes the other circle.

Karol: So that changes everything.
Teacher: Because the other circle depends on that.
Heather: So because it depends on it, it moves.

[Pair C, session 3 (phase 2)]

Here one of the students, Karol, asks, “So how come it [a point of intersec-
tion] keeps it [the figure] together. . .?”. The teacher does not address this
directly but returns to the idea of dependency.

At the end of each session the students are expected to write down
something about the session. Below is an extract from what this pair writes
at the end of the following session:

Things are ‘dependent’ and when they are made dependent they can’t move.
Dependence is created by an intersection between two things. For this ex-
ercise we made everything dependent on the perpendicular line so although
things move in different ways, one thing holds everything in place.
You have to make them dependent on each other, or another object, so it
stays how we want it to.

[Pair C, session 4 (phase 2)]

In writing that things “can’t move” the student is employing their own
description of invariance under drag. Clearly, under drag, things do move,
including points of intersection. The ‘things’ that do not ‘move’ are the
geometrical relationships that have been constructed (parallel lines remain
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parallel, for example). It is the hierarchies of dependencies, and the se-
quential organisation required by the software (see Balacheff, 1996, p. 7),
that the students are beginning to appreciate are central to constructing
figures in a DGE (such that any particular construction is robust under
drag). These are features specific to the software and the way that geomet-
rical theory is realised in that environment. As noted above, Hölzl et al.
(1994) found that students in their study needed to develop an awareness of
such functional dependency if they were to be successful with non-trivial
geometrical construction tasks using a DGE. Their experience was that this
idea was difficult for students to grasp. The students in this study similarly
took time to grasp the idea of functional dependency. As also noted above,
the spontaneous use of the conception of points of intersection as ‘glue’,
see student comment from session 3 (phase 2), is a phenomenon observed
by other studies of younger students’ early experiences with Cabri (see, for
example, Pratt and Ainley, 1996). It occurred spontaneously in this study
reported, despite the planned interventions by the teacher that focused on
the notion of dependency. Further evidence of the difficulty students have
with interpreting points of intersection is provided by Hoyles (1995, pp.
210–211).

The above examples illustrate how the notion of the constraint of ro-
bustness of a figure under drag became linked with using points of inter-
section to try to hold the figure together. The focus for the students was
on the mechanical aspects of the software environment, as illustrated by
their attempts to use points of intersection to ensure that their construction
could not be ‘messed up’, rather than on the geometry of the figure being
constructed. These interpretations of the software environment made by
the students in phase 1 (and into phase 2) of the teaching unit is an import-
ant aspect of the progressive mathematisation of the students’ sense of the
software environment. It provides part of the basis by which the students
began tackling the tasks in phases 2 and 3, which involve geometrical
theory much more explicitly.

In the analysis below, of phases 2 and 3, a major source of data is the
unaided writing of the student pairs that they produced during and at the
end of each session. This is augmented by extracts from the transcribed
recordings of the student oral explanations. The reason for focusing on
the student explanations is to reveal how they progressively mathematise
the sense they made of the software environment and how this impacts on
their developing mathematical reasoning. Such a focus means, however,
that, in general, there is little space to show how the students came to their
particular explanations. This is not the focus of this paper. Data from the
overall corpus is selected for each of phases 2 and 3 to illustrate the main
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aspects. The selection has been made on the basis of the representativeness
of the data in illustrating the overall trend of the students’ progressive
mathematisation.

Phase 2 of the teaching unit

Task 1 of phase 2 asked the students to construct a rhombus and explain
why the shape is a rhombus (the task is similar in format to that for con-
structing a square as shown in Figure 2). The explanations of the students
are as follows:

Pair A written explanation:

The radius is the same for the circle and the diamond [the rhombus] and we
made the diamond from the help of the first construction. The sides are all
the same because if the centre is in the right place the sides are bound to
be the same. The diagonals of the diamond cross in the middle though they
are different size (length). They cross at the middle through the line. Their
diagonals bisect each other. The angles [at the intersection of the diagonals]
are all the same. They are 90◦. The opposite angles [of the rhombus] are the
same. Two are more than 90◦ but less than 180◦ and the others are less than
90◦ but more than 0◦.
This shape is a rhombus because the sides are the same, the diagonals bisect
at right angles and the opposites have the same angles.

Pair C, in their written explanation, concentrate on recording their under-
standing of dependency (see above). Below is an extract from the session
transcript that took place near the end of the session:

Teacher: What sort of shape is that?
Karol: It’s a rhombus.
Teacher: How do you know it’s a rhombus?
Karol: Our old maths teacher used to call a rhombus a drunken square, because

it’s like a square, only sick.
Teacher: What do you know about a rhombus, from what you have done?
Heather: It’s got a centre.
Karol: It’s like a diamond . . .. But it’s not a square.
Teacher: What can you say about the sides or the angles . . . or the diagonals?
Karol: Those two angles [indicating the angles at one pair of opposite vertices]

are the same, and those two are the same . . . [indicating the other pair of
opposite angles]
But they are not all the same [indicating adjacent angles]
And . . . the sides are all the same length . . . I think.

Heather: It’s the same distance across each side.
Teacher: What can you say about how the diagonals cross?
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Karol: A right angle.
Teacher: How do you know?
Karol: It looks straight.

These outcomes are essentially descriptive rather than explanatory, and
there is evidence of a lack of student capability with precise mathematical
terminology (viz. the use of ‘diamond’ by both pairs) and some reliance
on perception rather than mathematical reasoning (for example, “It looks
straight”). As the students are familiar with the properties of a rhombus
they are able to provide these. However, they are likely to be unfamiliar
with the notion of economic mathematical definitions (de Villiers, 1994, p.
12), that is, definitions that contain only necessary and sufficient proper-
ties, and with how the properties are related (beyond writing, for example,
that “if the centre is in the right place the sides are bound to be the same”).

In task 2 of phase 2, the students are asked to construct a square and
explain why the shape is a square (see Figure 2). The written explanations
of the students are as follows:

Pair A written explanation:

It is a square because the sides are equal and the diagonals intersect. The
diagonals are [at] right angles (90◦).

Pair C written explanation:

It [the square] is made up of four equal sides. Its diagonals are equal. We
know the diagonals are equal because they are the diameters of the circle.
The diagonals cross at 90 degrees. The diameters have to be equal for it to
be a circle, and [the] diagonals have to be equal at 90 degrees [for it] to be
a square.
It is a square because two equal diagonals cross each other at a 90 degree
angle.

For this task, the written work of pair A remains essentially descriptive
while pair C (the more able pair) include an explanation that the diagonals
of the square are equal “because they are the diameters of the circle”. For
both pairs, their use of mathematical terminology is more precise than in
task 1.

Phase 3 of the teaching unit

While the three tasks in phase 2 (on which data from two is provided
above) were concerned with constructing individual quadrilaterals, the tasks
in phase 3 involved constructing a specified quadrilateral (for example, a
rectangle) in such a way that by dragging one of the vertices it could be
modified (or transformed) into a special case (in the example of a rectangle,
the special case would be a square).
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Task 5, of the overall sequence of tasks on quadrilaterals (the first task
in phase 3), required the construction of a rectangle that could be modified
to a square. The students were then expected to explain why all squares are
rectangles. These are their written explanations:

Pair A written explanation:

A rectangle . . . becomes a square when the diagonals become right angles
where they meet.

Pair C written explanation:

You can make a rectangle into a square by dragging one side shorter and so
the others become longer until the sides become equal.

These are very reasonable explanations of how a rectangle can “become a
square”. As can be seen from the students’ explanations, these are couched
in terms of the nature of the software environment, pair C more overtly
(through use of the term “dragging”). Both pairs write about something be-
coming something. These ‘pragmatic’ explanations, it is proposed, are ana-
logous to the notion of ‘pragmatic’ proofs, being ones that have “recourse
to actual actions” (Balacheff, 1988b, pp. 216–218).

What is not evidenced here, at this point, is whether the students ap-
preciate that, using inclusive definitions, a square is a special case of a
rectangle (which they may feel is different from a rectangle being able
to “become” a square) or, similarly, that all squares are rectangles (even
though they were asked about that). Partly, of course, this is the result of
the task, yet the task depends on the software. In the DGE, by definition, a
quadrilateral constructed as a square cannot be modified to a non-square as
the drag test of validity means that it must remain a square whatever basic
objects used in its construction are dragged.

Task 6 required the students to construct a kite that could be modified
to a rhombus and explain why all rhombi are kites. In task 7 the students
are asked to construct a trapezium that can be modified to a parallelogram
and thereby explain why all parallelograms are trapeziums. These are their
written explanations:

Pair A written explanation:

It is a trapezium because it has one pair of parallel lines. A parallelogram is
parallel both ways.

Pair C written explanation:

Trapeziums have one set of parallel lines and parallelograms have two sets
of parallel lines.

Neither of the students’ written explanations is couched in terms of the
nature of the software environment. There appears to have been a shift
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from ‘pragmatic’ explanations that reflect the nature of the software en-
vironment to mathematical explanation. The cause of this shift is mainly
due to the role of the teacher in consistently referring to the geometrical
properties of the shapes whenever there was an interaction with the stu-
dents. The role played by the teacher and the impact of the teacher-student
interactions is the subject of separate analysis.

Task 9 asked the students to complete the worksheet shown in Fig-
ure 3a as a way of showing the relationships between the ‘family’ of
quadrilaterals

All the pairs of students completed this task satisfactorily, in each case
with some interaction with the teacher. This interaction consisted of the
teacher referring the students back to earlier tasks they had completed in
the teaching unit, and the teacher asking the students to explain any rela-
tionship between the various quadrilaterals that the students could identify.
A completed worksheet (from pair A) is given in Figure 3b. Below are
extracts from the transcripts of the lessons relating to this task involving
pairs A and C.

Extracts from Pair A session transcript (pseudonyms Harri and Rus-
sell):

Teacher: Why is a square a special sort of rectangle?
Russell: Because they’ve both got right angles [at the vertices] but with a rect-

angle [indicating one that is not a square] one of the sides is bigger than the
other.

Teacher: Why is a rectangle a special case of a parallelogram?
Harri: The two opposite [sides] are the same length but [indicating a parallelo-

gram that is not a rectangle] they [the angles at the vertices] are not right
angles.

Extracts from Pair C session transcript (pseudonyms Heather and Karol):

Teacher: Why is a square a special sort of rhombus?
Heather: Because in a square all the . . . all the corners are 90 degrees and all the

sides are equal, but in a rhombus [indicating one that is not a square] all the
sides are equal but they [the angles at the vertices] are not 90-degree angles.

Teacher: Why that arrow? [indicating that a rhombus is a special form of paral-
lelogram].

Karol: It’s just like the rhombus and the square because . . . because all the sides
. . . the sides are . . . the opposite sides are of equal length, but there [in the
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Figure 3a. Worksheet on the ‘family’ of quadrilaterals.

Figure 3b. Worksheet on the ‘family’ of quadrilaterals.
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rhombus] they [the diagonals] cross at 90 degrees and there [indicating a
parallelogram that is not a rhombus] they don’t.

Thus, by the end of the teaching unit, the students were able to accept
questions of the form ‘why is one quadrilateral a special case of another’
and could offer explanations as to why this is the case. These explanations
are interesting in terms of how difficult it was for the students to articulate
their explanations without recourse to concrete illustrations. Consider the
explanation given by Russell in response to the question, why is a square a
special sort of rectangle. Saying that “they’ve both got right angles [at the
vertices] but with a rectangle [indicating one that is not a square] one of
the sides is bigger than the other” could be taken as incorrect, mathematic-
ally, because, as the set of rectangles contains the set of squares (using an
inclusive classification), it is incorrect to say that a rectangle “has one of
the sides bigger than the other” (since the statement has to refer to squares
too, for which it is patently untrue). The same argument can be made about
the explanations offered by the other students. Each of them had to find a
way of indicating that the set of more general quadrilaterals to which they
were referring excluded the special case. This is because, as de Villiers
(1994: 13) explains, partitioning is a “spontaneous and natural strategy”
and that “we would normally call a square a ‘square’ and reserve the term
‘rectangle’ only for a non-square (or general) rectangle”.

In explaining why a square is a special sort of rectangle, Russell could
have made use of a term such as ‘oblong’ for those rectangles that are not
squares. Yet this term is not only superfluous in an inclusive classification
but it depends itself on an exclusive definition, something that it not always
helpful from a mathematical perspective and is often discouraged in math-
ematics curricula and textbooks. The alternative would have been for the
student to have used a much more complicated sentence structure, some-
thing like, “both squares and rectangles have right angles at their vertices
but rectangles that are not squares have one of the sides bigger than the
other”. This is where issues to do with the logic of inclusive definitions and
classification, the language used for class inclusions, and the functional
aspects of hierarchical classification all have a bearing.

DISCUSSION

The classroom used for this study was selected because the students were
accustomed to a pedagogical approach involving mathematisation. The
usual approach of the teacher was to have the students working in pairs
or small groups (of 3 to 6 students) on a range of problem-based tasks,
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some ‘real’ (and similar to those in the RME tradition) and some of a
more ‘pure’ mathematical nature. The tasks the students tackled in the
teaching unit developed for this study was of the latter form. Their pro-
gressive mathematisation over the period of the study can be summarised
as follows:

• Initially, an emphasis on description rather than explanation. Some
reliance on perception rather than mathematical reasoning. Lack of
capability with precise mathematical language (similar to that found
in other studies, for example Fuys et al., 1988, pp. 135–136).

• At an interim stage, explanations become more mathematically pre-
cise but are influenced (mediated) by the nature of the dynamic geo-
metry software (for example by the use of the term ‘dragging’ or by
other phrases linked to the dynamic nature of the software).

• At the end of the teaching unit, explanations related entirely to the
mathematical context.

Overall, as the students worked through the teaching unit, there was a shift
in their thinking from imprecise, ‘everyday’ expressions, through reason-
ing mediated by the software environment to mathematical explanations of
the geometric situation.

Given the significant problems that many students have with the hier-
archical classification of quadrilaterals (see, for example, Fuys et al., 1988
and de Villiers, 1994) the evidence reported in this paper supports the sug-
gestion by de Villiers (op.cit.: p. 17) that dynamic geometry software offers
“great potential for conceptually enabling many children to see and accept
the possibility of hierarchical inclusions”. Such an outcome should help
to lay a solid foundation on which to develop further notions of deductive
thinking.

The research study reported in this paper also reveals the mediational
impact of using dynamic geometry software. As documented by this study
(and by other research referred to in this paper), this mediational impact
was in terms of the following:

• The students’ understanding that the order in which objects were
created leads to a hierarchy of functional dependency within a figure.

• The constraint of robustness of a figure under drag becoming linked
with using points of intersection to try to hold the figure together.

• The ‘dynamic’ nature of the software influencing the form of explan-
ation given by the students.

Thus, when using dynamic geometry software, students need to come to
terms with the notion of a hierarchy of functional dependency within a
figure (see, for further examples, Hölzl et al., 1994; Jones, 1996). Secondly,
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the students need to gain an appreciation of the notion of the constraint of
robustness of a figure under drag as a mathematical feature, rather than,
say, as ‘mechanical glue’ (Pratt and Ainley, 1996; Jones, 1998). Thirdly,
the ‘dynamic’ nature of the software influences the form of explanation
given by the students (what Hölzl, 1996, p. 184, refers to as reasoning “in
a Cabri-specific style”).

As Hölzl (1996) points out, this latter example of tool mediation is akin
to the notion of ‘situated abstraction’ proposed by Noss and Hoyles (1996,
pp. 122–125) as a step in constructing a mathematical generalisation. In
this conceptualisation, the abstraction is ‘situated’ in that the knowledge is
defined by the actions within a context. Yet it is an abstraction in that the
description is not a routinised report of action but exemplifies the students’
reflections on their actions as they strive to communicate a mathematical
explanation. Recall that Pair C wrote: “you can make a rectangle into a
square by dragging one side shorter and so the others become longer until
the sides become equal”. Such an explanation, using Balacheff’s (1988)
distinction, could be called a pragmatic explanation in that it refers to
actual actions. The form of explanations given by the students later in the
teaching unit, in resting on the mathematical properties in question, would,
to continue the analogy, constitute conceptual explanations.

The evidence from this study indicates that using dynamic geometry
software does provide students with access to the world of geometrical
theorems but it is access that is mediated by features of the software en-
vironment, certainly in the vital early and intermediate stages of using the
software. The research described in this paper illustrates that with care-
fully designed tasks, sensitive teacher input, and a classroom environment
that encourages conjecturing and a focus on mathematical explanation,
students can make progress with formulating mathematical explanations
and coming to terms with inclusive definitions, both important aspects
of developing a facility with deductive reasoning. Without such factors,
the mediational impact of the software could be such that it may distract
students from the geometry of the problem situation or possibly reduce the
perceived need for deductive proof.

De Villiers (1998) suggests that a focus on mathematical explanation
is part of the route to a greater appreciation of the role and function of
mathematical proof. This study was designed to illuminate the impact of
dynamic geometry software on one small component of this, the relation-
ships between quadrilaterals to form a hierarchical classification. While
the study was informed by research on the van Hiele model of thinking in
geometry, the results should not be taken as evidence, necessarily, of the
validity of the van Hiele model. According to Duval (1998), for instance,
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a model of mathematics learning in which different ways of mathematical
reasoning are organised according to a strict hierarchy (as in the van Hiele
model) is inappropriate. Rather than being representative of higher (or
lower) levels of thinking, Duval argues that different kinds of cognitive
activity have their own specific and independent development (this may
account for evidence that students can appear to be operating at more than
one van Hiele level simultaneously, a finding reported by Gutiérrez, Jaime
and Fortuny, 1991).

In the mathematics classroom, the practical issues of when and how
to use dynamic geometry software are very important. Much previous re-
search with dynamic geometry software has focused on students in upper
secondary school where the students have received considerable teaching
input in plane geometry, including the proving of elementary theorems,
but are new to the particular software tool. The study reported in this paper
focuses on students in lower secondary school where students have quite
limited experience of the formal aspects of geometry (and have certainly
never seen a proof or been asked to prove a theorem). The evidence presen-
ted in this paper confirms that students can make progress towards math-
ematical explanations, which, it is suggested, should provide a foundation
on which to build further notions of deductive reasoning in mathematics.
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