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ALGEBRAIC PROCEDURES USED BY 13-TO-15-YEAR-OLDS

ABSTRACT. Students of Grade 7 were given a test followed by individual interviews; at
the end of Grade 8 the same students were subject to an analogous test and interviews.
Each student had to simplify certain algebraic expressions. This article is focussed on what
types of procedures were used by the students performing the task and how they were
explained during the interviews. The author identifies seven types of procedures used by
students, labelled: (A) Automatization, (F) Formulas, (GS) Guessing-Substituting, (PM)
Preparatory Modification of the expression (this includes a subtype: Atomization), (C)
Concretization, (R) Rules, (QR) Quasi-rules. Part of the students’ procedures led to correct
results, others were wrong. Most of the procedures appeared spontaneous in the sense that
they had not been taught in the classroom. Prior to the tests, the teachers (in accordance
with the curriculum) had done their best to explain the validity of algebraic transformations
by referring to the commutativity of addition and multiplication, distributivity, and to
geometric interpretation; however, the interviewees (even explicitly asked) seldom used
such arguments.

INTRODUCTION

This paper is a report on the procedures used by students (aged 13 to 15)
who were to simplify given algebraic expressions or, put differently, to
perform given algebraic operations, e.g.,

6x+ 3x = : : : or (�2x) � 8x = : : :

The main questions considered here are: What procedures are used
by the students while performing such tasks? Are they mostly procedures
that were explained and used earlier by the teacher? Or perhaps most
proceduresare spontaneous, that is, invented by children themselves? What
can be said about the development of students’ procedures? Are they stable
over a long period? Is there a correlation between the types of procedures
and the achievements of the students using them? How do the students
interpret the equality sign in an algebraic identity such as 6x+3x= 9x?

Clarifying the terms

In the sequel, the term operation will be confined to four basic arith-
metic/algebraic operations, supplemented with squaring and cubing. Basic
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properties of operations will mean the standard properties: the commuta-
tivity and associativity of addition and multiplication, identity properties of
0 and 1, distributivity, and relations between inverse operations (expressed
as a formula, e.g., a+ b = b+ a, or verbally referring to actions).

By the structure of an algebraic expression it is meant its surface struc-
ture in the sense of C. Kieran (1989), i.e., the arrangement of the terms
and operations. The phrase: transforming an algebraic expression f(x)

means: finding another expression g(x) such that f(x) = g(x) for all x in
the intersection of the domains of f and g; generally, the purpose of the
transformation is to find a simpler form of the expression.

According to Webster’s New World Dictionary, procedure is “the act,
method, or manner of proceeding in some process or course of action”.
In this article by a type of procedure it is meant the method or manner of
transforming a given algebraic expression while by a student’s procedure it
is meant a particular way of doing this by the interviewee, judged by his/her
performance, especially by the response to the request: “Tell me: How did
you get your result?” together with the explanation and justification (given
spontaneously by the child or prompted by explicit questions).

Background

Difficulties and errors of students’ transforming algebraic expressions have
been of interest to researchers for several decades. In particular, in Poland
in the 1950’s the problem was a subject of vivid discussions in the context
of formalism in mathematics education. Krygowska (1957) gave examples
of certain erroneous transformations of algebraic expressions and called
the phenomenon ‘formalism’; later she used a stronger term degenerate
formalism, characterized as follows (Krygowska, 1977: p. 101):

The consequences of not taking the due care that the students’ understanding of the structure
of algebraic expressions be always correct and clear, are known: glaring errors in algebraic
transformations, ‘degenerate’ formalism, which manifests itself in thoughtless, ‘slapdash’
manipulation of symbols, is something totally different from correct formalism, which also
consists in manipulating symbols, but in accordance to strictly applied rules.

According to Ćwik (1984: p. 76), degenerate formalism consists in
so strong a detachment of the rules of manipulating symbols from their
meaning that, first, referring to the meaning is no longer a way of checking
the correctness of the computation and, second, the student formulates
his/her own wrong rules. These latter are often persistently fixed in the
mind, or may be used ad hoc, based on various associations, but neither on
the meaning of symbols nor on formal deduction.
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Turnau (1990: p. 163) considers it necessary that students move back
from algebra to the intuitive meaning of objects and operations. This should
happen frequently enough so that such returns be always possible.

There is a long-standing question whether school algebra should be
presented the way algebra was understood in the early nineteenth century
(see, e.g., Eves, 1981: p. 89 and 98), that is, as generalized arithmetic, gov-
erned by the same familiar laws as those concerning computations on plain
numbers. According to this interpretation, in algebra – instead of working
with specific numbers (as we do in arithmetic) – we employ letters which
represent numbers. Or perhaps algebra should be treated as a symbolic
system based on formal rules? Thus, two aspects of transformations of
algebraic expressions should be considered: (i) the equality of expressions
when numbers are substituted instead of the variables, (ii) obeying the rules
(such as basic properties of operations). How should these two aspects be
included in learning algebra? Though the present study is not aimed at
such a general problem, answering the questions raised at the beginning of
the paper may shed a light on it.

An account of arithmetical roots of the early algebra learning was given
by C. Kieran in her survey (1989). She pointed out that the tradition-
al emphasis in the curriculum on ‘finding the answer’ allows arithmetic
learners to get by with informal, intuitive procedures; however, in alge-
bra they are required to recognize the structure that they have been able
to avoid in arithmetic. She also mentioned (p. 43) that in contrast to the
large number of papers on students’ concepts of variable, relatively little
research had addressed itself specifically to the concept of an algebraic
expression. Collis (1974), R. B. Davis (1975) and Booth (1984) pointed
out the incongruencies between arithmetic and algebra and the conse-
quent inability of novice algebra students to regard algebraic expressions
as legitimate answers. Herscovics and Chalouh (1985) noted examples of
cognitive conflict created by the existence of both an arithmetical and an
algebraic frame of reference in the mind of novice algebra students.

The popular belief that algebra should be introduced as growing out
of arithmetic was challenged by Lee and Wheeler (1989). They gathered
test-interview data which showed that such an approach faced serious
pedagogical difficulties and might obscure the genuine obstacles. It was
found that for many students (even some of those who were successful
at standard algebraic tasks) algebra and arithmetic were two dissociated
worlds; when these students were confronted with both, their arithmetic
appeared disturbed by algebra.

The present paper owes various ideas to the reports of two British
projects: CSMS (“Concepts in Secondary Mathematics and Science”)
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and SESM (“Strategies and Errors in Secondary Mathematics”), see Hart
(1981), Booth (1981, 1983–84, 1984), Küchemann (1981). These studies
found that:

– some kinds of errors are widespread among students of different ages,
independent of the course of their previous learning of algebra,

– surprisingly, the differences between skills of 13-year-olds and 15-
year-olds were not as big as expected.

– a significant number of students did not use the formal methods taught
in schools, preferring some intuitive strategies.

The students’ procedures often referred to objects of real life (e.g.,
the algebraic expression 8a was interpreted as short for ‘8 apples’). Such
procedures were efficient in the case of simple tasks, e.g., transforming
2a+ 3a, and were categorized as lower forms of understanding; they were
not sufficient for somewhat more difficult tasks, e.g., 3a � b + a. Such
low-level procedures were used by both younger and older students, and
this partially explains (Booth, 1983–84) the lack of definite differences in
their algebraic skills.

METHOD

The study included all 108 students from 4 classes during Grades 7 and
8 in 3 schools in Gdańsk and Malbork. All teachers involved in the study
had a university degree with some postgraduate training. The topics fol-
lowed the Polish national curriculum. No attempt was made to implement
any modifications or novelties. The author had taught one of the classes
from Grade 4 on and gathered documents: plans of lessons, notes on the
childrens’ behaviour, copies of students’ papers from tests.

In the middle of Grade 7 the students of all these four classes were
given paper-and-pen Test I consisting of three problems. The purpose of
Problem 1, divided into 10 independent items, was to provide information
on how the children would transform the given algebraic expressions. The
selection of the structure of each expression was based on observation
of difficulties encountered by students. Problem 2 concerned their under-
standing of the value of an expression for a given value of x and of the
equality of two expressions. The style of wording of the problems followed
that in textbooks used by the children.

Problems given in Test I for Grade 7

Problem 1. Write each of the following expressions in the simplest form
possible:
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(a) 6x+ 3x; (b) 6x � 3x; (c) 3x� 6x;
(d) 3x � (�6); (e) 6x : 3; (f) �3 + 6x;
(g) 2x+ 3� 3x; (h) �x+ 2� x2

+ 1; (i) (6x+ 3x)2;

(j) 2x2 � x� 5x2:

Problem 2. Find the numerical value of expressions (g) and (h) in
Problem 1 for x = �5.

There was no time limit; students returned their work when they felt
they had finished (yet, nobody exceeded the duration of a standard lesson,
i.e., 45 minutes). The author analysed the responses, tentatively classified
the errors, and then selected a sample of 51 students for oral interviews,
which were organized within two weeks of the test. All care was taken to
ensure that (i) the sample included the largest possible variety of errors and
childrens’ strategies and (ii) it was a reasonable cross-section of students’
ability levels from poor to very good.

Each of the 51 children was interviewed individually by the author. The
interview lasted from some 20 minutes to 45 minutes. The child received
his/her paper (which looked exactly the same as it did when the child
had returned it, without any marks or corrections), was asked to read it
carefully and was invited to make possible corrections with a coloured
pen. When this was done, the child was asked to explain how he/she
obtained the results. When Problem 2 was discussed, each student was
asked two additional questions. First: “Which version of the expression
(the original or the simplified one) did you choose for computing the
value of the expression” (or: “would you have chosen” if the child had not
computed it). Second: “Suppose you substitute the given number in the
other version of the expression; will you get the same value?”.

At the end of Grade 8 the same four classes were given Test II and the
same children were subject to analogous interviews. The problems for Test
II had the same purpose as those in Test I, but the choice of the expressions
reflected the students’ progress. Their relative difficulty compared with the
curriculum requirements remained much the same.

Problems given in Test II for Grade 8

Problem 1. Perform the operations:

(k) (�2x) � 8x; (m) 2x : 8; (n) 8x2 : 2x;
(o) �2x2

+ 8� 8x� 4x2; (p) (�4x+ 3) + (�1 + 2x);
(q) (�4x+ 3)� (�1 + 2x); (r) (�4x+ 3)(�1 + 2x);
(s) �2(3x� 8); (t) 2x(3x� 8); (u) (3x� 8) : 2;
(v) (8x� 2x)2; (w) (8� 2x)2;

(y) (2x2
+ 5x)� 3x; (z) (12x3 � x2

)� 3x(2x+ 1)(2x� 1):
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Problem 2. Find the numerical value of expression (z) in Problem 1 for
x = �3.

Each test resulted in: a) about 100 students’ papers, b) protocols from
about 50 interviews. This material was analysed by the author seeking
for patterns and regularities concerning the following questions: What is
the number and the percentage of correct solutions for each part of the
test and for each student? What is the hierarchy of relative difficulties
of the expressions to transform (measured in terms of correct solutions)?
What kind of errors were made by students? What procedures were used
by them? Can we divide them – according to their results – into some
characteristic groups? The work on the data was confined to (i) qualitative
and quantitative analysis of the students’ errors and their difficulties and (ii)
qualitative analysis of the procedures used by the students. This paper deals
with the latter. Problem 3 (concerning inverse operations) is not discussed
here.

DESCRIPTION OF TYPES OF PROCEDURES

There were 10 expressions to simplify in Test I and 14 in Test II. Thus, alto-
gether, the data concerned about 2400 written transformations and notes
of oral descriptions of about 1200 transformations made during the inter-
views. As a result of the search for patterns, seven types of students’ proce-
dures have been identified and labelled as follows: (A) Automatization, (F)
Formulas, (GS) Guessing-Substituting, (PM) Preparatory Modification of
the expression (this includes a subtype: Atomization), (C) Concretization,
(R) Rules, (QR) Quasi-rules. They are explained below.

The author has found that these 7 types suffice to describe over 90% of
the twelve hundred cases of the behaviour of the students who transformed
the expressions during the interviews. The remaining cases appear too
vague to classify; procedures of some students were borderline cases.

Still, only part of those 90% can be described in terms of a single type of
procedure; there may be several (usually two or three) types recognized in
the way the child transformed an expression; characteristic combinations
were: (PM)+(R)+(C) and (R)+(GS). This should be understood as the
use of several types in consecutive steps of a transformation rather than
as one mixed type. Some types, e.g., (GS) or (PM), appeared always in
conjunction with another type whereas some other types, e.g., (R) or (A),
often appeared as pure types. A child might use a procedure of one type
for some expression and of another type for another expression.

The types should not be interpreted in terms: correct–incorrect. A stu-
dent might use a procedure of type Rules, say, in a mathematically correct
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way in one problem and then use a wrong rule in another problem. Also
procedures are not evaluated here as ‘better’ or ‘worse’. They are just
described and their most important features are identified.

(A)-procedures (that is, procedures of type (A) Automatization) were
used by students who were most successful at the tests, those of type Quasi-
rules – by least successful. An account of findings on correlations between
the types of procedures and students’ achievements is given below.

(A) Automatization

The characteristic feature of type (A) is automatization of the operations
involved in the transformation: the student immediately knew the correct
result of the transformation and was genuinely surprised by the questions
“How did you get the result?” and “Why do you think it is correct?”. Typical
answers were: “It is obvious”, “I have no idea why I know it”, “Perhaps
we had this in the class, but I do not remember”, “I just know it”, “I see
it at once, just looking at the expression”. The student behaved as if the
operations were somehow interiorized and became part of his/her inner
nature. However, when the child performed the operations skilfully and
either (i) he/she was able to explain them or (ii), in contrast, it appeared
that he/she only reproduced what had been taught (“I learnt this way during
my classes”), the procedure was not identified as (A).

Type (A) is a very special type of procedure. One may object to the use
of the word ‘procedure’ when the child’s reasoning is not disclosed. Yet, an
(A)-procedure does satisfy the conditions formulated in the Introduction.
It is an act of transforming the expression and has certain characteristic
features. During the interviews the author sometimes had doubts how to
classify certain procedures, but this never happened in the case of (A)-
procedures. It should be emphasized that the crucial criterion was the
behaviour and attitude of the child, not only specific words used during
the interview; consequently, it is difficult to present it faithfully in print.
Type (A) was noted only in Grade 8, only in the case of best students, and
only when operations were really easy for them. It never occurred when
operations on negative numbers were involved.

(F) Formulas

(F)-procedures are characterized by the use of formulas with variables; the
child should be able to substitute a number or a term (such as 3x or�5x2)
in the formula. For instance, dealing with (8x� 2x)2 in (v) a student said:
“I used the formula (a+ b)2

= a2
+ 2ab+ b2; a is 8x, b is �2x”; another

student, explaining a transformation of (2x+1)(2x�1) in (z), said: “there
is such a formula: (a + b)(a � b) = a2 � b2”. A student explained the
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transformation of (�4x+3)(�1+2x) in (r) by saying “I used the formula
of short multiplication”; after the question: “What formula do you mean?”
he wrote: (a+ b)(c+ d) = ac+ ad+ bc+ bd. Such formulas were shown
in the classroom many times. Purely oral explanations such as “I multiply
each term in the first parentheses by each term of the second parentheses”
are not identified as type (F), but as an essentially different type (R) Rules,
described below. Many students could give an oral description of their
procedures but were not able to write pertinent formulas with letters (when
they were asked to write a formula, they repeated the oral description).

Part of (F)-procedures lead to incorrect results; students either used
erroneous formulas, e.g., (a�b)2

= a2�2ab�b2, or used correct formulas
in a wrong way, e.g., used the formula (a� b)2

= a2�2ab+ b2 and wrote:
(8� 2x)2

= 82 � 2 � 8 � (�2x) + (�2x)2.

(GS) Guessing-Substituting

Students using a (GS)-procedure had some idea what the result of the
transformation should look like and then ‘checked it with numbers’, that
is, substituted a number (most often it was 2 or 3) in the original version
of the given expression and then in the new one. Sometimes they also
tried another number. The purpose of the substitution was to examine the
equality of the two expressions or to check whether the guess was correct.
Some students commented, e.g., “I substitute a concrete number here to
check if this is all right. No, I don’t do this always, only when I don’t
know or am not sure. I remember how to transform some expressions, for
instance, 3x plus 6x”. Type (GS) was seldom used in Problem 1. Part of the
procedures identified as (GS) gave correct results, part – wrong. The errors
usually resulted from the lack of skill in performing the operations.

(PM) Preparatory Modification

Procedures identified as Preparatory Modification of the given expression
were used by students who aimed at changing the given surface structure
of the expression to a more elementary or easier-to-understand form of it.
E.g., a child pointed the expression�2x2

+ 8� 8x� 4x2 in (b), said: “I’ll
change it to addition” and wrote �2x2

+ 8 + (�8x) + (�4x2); another
child uttered “This is the sum of�x2, 8,�8x and�4x2”. Dealing with the
subtraction (�4x+3)�(�1+2x) in (q) some students said “I am changing
this to addition” and wrote: (�4x+ 3)+ (�1)(�1+ 2x); however, purely
verbal explanations were more frequent, e.g.: “This minus sign before the
second parentheses is the same as if it were �1 here”. A student said: “In
the second parentheses I changed the signs to the opposites” and wrote:
(�4x+ 3) + (+1� 2x).
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This approach was often (particularly in Grade 8) commented on by
the children, e.g., “It pays to replace by addition; addition lets you move
freely”. Sometimes a student who found an error in his/her paper, e.g., in
�2x2

+ 8 � 8x � 4x2 in (o), uttered angrily: “If I had written this as a
sum, I would not have made this mistake”. Some students tried to order the
terms according to powers of x, explaining, e.g.: “to make it easier” or “I
want to have the like terms together”. One child changed the sum�2+ 8x
to a safer 8x+ (�2).

In the preliminary analysis, a type called Atomization was distinguished.
During the interviews, some seventh graders wrote, e.g.,

(�) 6x+ 3x = x+ x+ x+ x+ x+ x + x+ x+ x;

this helped them to see that it was 9x. Nevertheless, having analysed the
interviews with eighth graders the author decided to regard Atomization as
a special case of (PM) Preparatory Modification.

Students used (PM)-procedures in the case of products too, in some
characteristic ways. E.g., a kind of atomization consisted in explicitly
writing the multiplication symbol in each monomial, e.g., while dealing
with 6x�3x some students wrote 6�x�3�x and explained: “I am filling in the
dots and then I can see I have only multiplication, and with multiplication
the numbers may be transposed.”

Changing division to a fraction is also regarded as a (PM)-procedure.
For instance, in (n) the division 8x2 : 2x was first replaced by 8x2

2x because
“It is convenient to change to the fraction bar. You can then simplify”. In
the same task (n) another student replaced the numerator of the fraction
8x2

2x by 8 � x � x and said: “I am writing out x2 as x times x. Now you can
more easily see what can be cancelled ”; this is again a kind of atomization.
Sporadic seventh graders wrote x2 in the expression 2x2 � x� 5x2 in (j)
as x � x or uttered “x times x”, explaining “this is to avoid mistakes and
incorrect reductions, to see that it is x times x, not just x”.

Another kind of a (PM)-procedure was converting division to the mul-
tiplication by the inverse number, e.g., a student wrote 6x : 3 = 6x � 1

3 and
declared: “Now I have multiplication only, so I know what to do”.

Most of the (PM)-procedures led to correct results; moreover, they were
reasonable as preparation to the next step of the transformation.

Some of the (PM)-procedures, e.g., decomposition (�) or writing x2 in
a polynomial as x � x, had never been shown during any lesson.

(C) Concretization

(C)-procedures are described as follows: The student imagined some model
of the abstract operation to be performed (often treated as analogy, with
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characteristic phrases such as “the same as”, “similarly to”). The model
might be somewhat abstract, but still more concrete than algebra. Often it
referred to relations of concrete objects in everyday life, e.g., “3x and 6x
make together 9x in much the same way as 3 apples and 6 apples make
together 9 apples” or “6x [divided] by 3 is 2x, because if 6 apples are
shared by 3 people then each will get 2 apples”.

Another, also frequent, kind of concretization consisted in treating x as
if it were something concrete, but without referring explicitly to external
objects, e.g., “3 x’es and 6 x’es make 9 x’es”, or “6 x’es are divided into
3 equal parts; there will be 2 x’es in each part”.

Only one student (out of fifty) referred to possible numerical values of
x: “6x and 3x is 9x, as for instance 6 times 3 and 3 times 3 is 9 times 3”,
though such explanations had been frequent during lessons (at least in the
class taught by the author). Only one student used the number line.

No student ever used an adequate concretization leading to a incorrect
result. However, there were sporadic inadequate concretizations, e.g., while
6x was explained as 6 cherries, 6x � 3x became ‘18 squared cherries’.

(R) Rules

A student’s procedure is categorized as a procedure of type (R) Rules when
the following conditions are satisfied:

(1) the student referred to a rule describing a way of transforming
the given expression (saying, e.g., “It’s a rule”) and/or indicated (either
explicitly or implicitly) the way of doing this so that it was clear how to
formulate such a rule;

(2) it was not a procedure of any of types (F) Formulas, (GS) Guessing-
Substituting, (PM) Preparatory Modification or (C) Concretization;

(3) no inconsistency was ever observed in the student’s behaviour (oth-
erwise the procedure was categorized as type (QR) Quasi-rules described
below), i.e., each time when the expression was of the same structure (with
different coefficients) the child used the same rule or consciously chose
another way though was aware of the applicability of the previous rule.

Some children first referred to a rule and then, dealing with an analo-
gous expression, said laconically, e.g., “Well, I am computing” or “I am
transforming”. Yet, after having been pushed to be more specific, almost
always their explanations concerned the same rule. Few students were not
able to explain their way and then the author suggested what might be the
rule; the child either confirmed this or denied it and tried to correct the for-
mulation. The consistency of the explanations (or its lack) was thoroughly
traced during the interviews and was a basis for the decision whether to
qualify the procedure as type (R) Rules or rather as (QR) Quasi-rules.
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In most cases the rules were correct, verbalized in the form of how to
proceed, often in the first person (a natural reaction to the way the question
was phrased). It should be emphasized that the description of type (R) does
not take into account whether the rule is correct or not; if a wrong rule is
used systematically and in a coherent way, the procedure is categorized as
(R). This stipulation is crucial to the present study.

An example of a rule leading to a correct result in 6x + 3x in (a) is:
“In addition, you add coefficients and copy x”. An apparently similar rule,
applied to 6x � 3x in (b), yields an incorrect result; a child performing
the multiplication 3x � 6x said: “I must multiply these numbers [showed
the coefficients] and then write x”. The students who used such a rule in
(b) often reacted to expression 3x � (�6) in (d) by saying: “This can’t be
done, because these terms are not similar”; still, the author regards such
behaviour as consistent, for the structure of (d) differs from that in (b).

Some of the rules were presented by students in much the same way as
the teacher had done it, e.g., “When we subtract an algebraic sum, we have
to replace the sign of each term by its opposite”. However, quite often the
rules quoted by students appeared to have been formulated by themselves
as a result of their experience in the classroom. This was obvious in the class
taught by the author, but the teachers of the three other classes expressed
the same opinion. Sample: “When we subtract similar expressions, we
subtract the coefficients and the letter remains the same”.

Students’ modifications of rules were particularly striking when they
were not correct. Samples: in (j), “2x2�x�5x2

= 4x�x�25x = �22x
because we must first compute the powers here”; in the case of (q) a student
commented (�4x+ 3)� (�1+ 2x) by saying: “we change the sign of the
first term, that is, it’s �1, and the other term is copied without change”;
dealing with (�4x + 3)(�1 + 2x) in (r) a student said: “we multiply the
similar terms, that is, �4x times 2x plus 3 times �1”.

According to a recommendation in the curriculum, the author had kept
explaining the algebraic transformations to her class by referring to the
basic properties of operations. Yet, this kind of explanation was rare dur-
ing interviews with those children, though they were pushed to do so.
Moreover, when students did refer to such a law, it was often incorrect.
E.g., a child wrote: 3x + 6x = 9x with explanation: “in virtue of the
associativity law”; another student wrote (8 � 2x)2

= 82 � (2x)2 and
commented: “by distributivity law”. The only properties that were correct-
ly quoted by students were: 1) distributivity in the case where a(b + c)

was transformed into ab + ac, 2) commutativity (mostly in the case of
addition, sporadically – multiplication). References to associativity were
very rare.
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The students rarely attempted to justify their rules (even after an explicit
question “Why do you think it works”), saying e.g.: “This was the way we
did it in the classroom” or “Our teacher taught us so”. Such answers were
also given in cases where for sure such rules had never been formulated
during any lesson. A student of the class taught by the author worked with
6x � 3x and said: “when we multiply 3x by 6x, we multiply 3 by 6 and copy
x”; his explanation was astonishing: “You told us so”.

(QR) Quasi-rules

This type of procedure is characterized as follows: The students quoted a
rule (or it was easy to identify the rule after listening to the explanation) but
did so in an inconsistent way. Some of these transformations were correct, a
lot were not. However, the author’s main point is that the difference between
frequencies of errors in (R) Rules and (QR) is of secondary importance.
What is crucial is the consistency of the student’s system of beliefs. (R)-
procedures were consistent, (QR)-procedures were not.

For instance, dealing with expression�2x2
+8�8x�4x2 in (o) a student

said: “First we must raise to the power” and replaced the first term�2x2 by
4x2; a moment later he copied the last term �4x2 (without ‘raising to the
power’). Another student, dealing with �4x+ 5+ 3x, explained: “We can
only collect�4x with 3x, 5 is not like to them” and immediately afterwards
‘simplified’ all terms of the expression. Even when the same expression was
transformed once again, some students first claimed what rule they used
and a moment later uttered another (non-equivalent) rule, as if ‘rules’ were
something arbitrary. Moreover, for some students the fact that they obtained
different results did not appear to be a problem, e.g., a student replaced x2

first by x, then by 2x, and next time by 2 + x. Their performance seemed
to be quite haphazard, the computations were fraught with unsystematic
errors. (QR)-procedures appeared to be symptoms (rather than reasons)
of serious troubles. The author had the impression that these students
formulated the rules ad hoc, recalled something, uttered a rule, forgot it
shortly afterwards, invented another rule which was to cover the situation,
and so on. E.g., a student wrote 6x � 3x = 18x with a comment: “in
multiplication I multiply numbers and write x” and a moment later he had
no idea what to do with 9x � 9x. When such students were asked “Why
do you think so”, very often they withdrew and asked, e.g., “Oh, isn’t it?”
or quoted another rule and claimed that it was ‘really’ the rule that was
used. Several of them appeared deceived by ‘attractors’, that is, superficial
features which attracted their attention, e.g., when they saw+3 at one place
and �3 in �3x, they were tempted to ‘cancel’, without understanding the
structure of the expression.
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DEVELOPMENT OF STUDENTS PROCEDURES

An analysis of the results of the study clearly shows that students’ pro-
cedures did evolve in the course of 15 months between Test I and Test
II.

The algebraic structures of some expressions from Test II were some-
what analogous to those of Test I, namely: (v)$ (i); (m)$ (e); (k)$ (b);
(p),(q)$ (g); (y),(o)$ (h),(j). The purpose of this arrangement was to get
a chance of comparing the procedures used by the same student dealing
with the same kind of expression after 15 months.

Having selected the expressions for Test II (but before administering it)
the author believed that an analysis of procedures used in simplifying (k)–
(z) would enable her to compare them with procedures that had been used
for expressions (a)–(j): the reduction of similar terms in polynomials of
degree 1 and the multiplication of px by a number, which were components
of transformations needed for (k)–(z). This assumption turned out wrong,
for the students who performed such a transformation as part of a complex
task focussed on the latter. Auxiliary parts of the main transformation
were carried out mechanically; during the interviews students spoke only
about the prime task. Questions concerning these ‘subroutines’ distracted
the interviewees; they were reluctant to respond. This does not mean that
these procedures were classified as (A) Automatization. On the other hand,
the change of natural coefficients in Test I to fractions or negative integers
in some expressions (given or resulting) in Test II might force the student
to change the type of the procedure (e.g., (C) Concretization might no
longer work).

Procedures of type (QR) Quasi-rules were noted in both tests; their
frequency in Grade 8 was a little lower than in Grade 7. Some students
passed from (QR) in Grade 7 to (R) Rules or (F) Formulas in Grade 8 while
some other students’ procedures were categorized as (QR) also in Grade 8;
sporadically, a student who used (R)-procedures in Grade 7 would regress
to (QR) in Grade 8.

(R)-procedures were the most common type of procedures in Grade 7
(each student interviewed in Grade 7 used such a procedure at least once);
in Grade 8 their usage was increased further. Though the expressions in
Test II were more difficult than those in Test I, the percentage of correct
(R)-procedures increased. Moreover, there were numerous indications that
the rules used by many eighth graders formed a somewhat coherent system.
For instance, a student said: “I multiply this number by that number [shows
coefficients] and x by x, but in addition you add the numbers and the letter
remains unchanged” or “here we’ll get x2; there was a time when I thought
it would be only x as it was the case with addition; now I know that in
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addition and subtraction it’s this way and in multiplication – otherwise”.
Some students who used only (R) in Grade 7 extended later the scope of
their types of procedures and used also (C) Concretization, (F) Formulas
or (PM) Preparatory Modification. See also Diagrams 1–2 below.

Diagram 1. Frequencies of types of procedures of the students of Grade 7 depending
on their achievement level. Each segment of the horizontal line (at the bottom) represents
one type of students’ procedures; information provided in the column above the segment
concerns this type. Each level at the vertical line represents one group of students; the
corresponding row contains information about the frequencies of types of procedures used
by students of this group. Double line —— denotes the prevailing type (for the group of
students shown on the left). Continuous lines —— denote types which were frequent but
not prevailing. Dotted lines � � � � � � �� denote types which appeared only sporadically or
were rare. Blank spaces denote types which were never observed.

Diagram 2. Frequencies of types of procedures of the students of Grade 8 depending on
their achievement level. For further explanations, see Diagram 1.

CORRELATION BETWEEN TYPES OF PROCEDURES AND STUDENTS’ ACHIEVEMENTS

After each test the author distinguished three groups of students, labelled S,
PS and F. Their description is based on the frequencies of correct transfor-
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mations in Problem 1. In Grade 7, group S (short for ‘success’) consisted
of students who got over 70% of possible points (i.e., they correctly trans-
formed at least 8 expressions out of the total of 10 expressions, fractional
scores were not given); group PS (short for ‘partial success’) consisted of
students who had over 30% and at most 70% of correct transformations(3);
group F (short for ‘failure’) consisted of students who had at most 30% of
correct transformations in Problem 1.

It was found that, approximately, 20% of students participating in Test
I qualified for group S, about 65% of students were in group PS, and about
15% in group F. The frequencies of types of procedures were correlated
to the level of students’ success, as shown in the following diagrams.

In Grade 7, procedures of students in S were the most varied and those
in F the least varied. Typically, a student in S used (R) Rules and one or
two other types; students who used only (R) were rare in S. (R) was more
frequent in PS than in S.

In Grade 8, a similar analysis of test and interview data concerning
Problem 1 confirmed the existence of three distinct groups (determined by
the same bounds: 70% and 30%): S consisted of students who wrote Test
II and got at least 10 points (out of 14), PS of those who got from 5 to 9
points, F – those who got up to 4 points.

The change of distribution of scores in Test II was fundamental. The
percentages were nearly doubled or halved: S – over 35% of students (much
more than in Grade 7), PS also over 35% (much less than in Grade 7), F –
about 25% (much more than in Grade 7).

Each individual student participating in Test I was traced to Test II.
Almost all students of group S (in Grade 7) remained in S (in Grade 8).
Students in PS split into three parts: the largest part, consisting of about
half of PS in Grade 7, remained in PS in Grade 8; a quarter of PS in
Grade 7 advanced to S, and another quarter dropped to F. Over half of the
students from F remained in F; other students in this group advanced to PS.
Let us note that the expressions in Test II were more difficult than those
in Test I. Consequently, remaining at the same percentage level means
notable progress of the student.

In Grade 8, procedures of students in S were even more varied than
before. The combinations (R)+(PM)+(F) appeared quite often, sometimes
together with one or two other types: (GS), or (A), or (C). Also in PS
the combination (R)+(PM)+(F) was frequent. The patterns of change of
procedures of individual students manifest the following general trends:

(1) Most of the students whose percentage of correct transformations
increased from Grade 7 to Grade 8 used in Grade 8 more types of procedures
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than in Grade 7. Most of the students who did not make progress used the
same number of types (or sometimes less).

(2) Almost all seventh graders who used procedures of types (GS)
Guessing-Substituting, (C) Concretization or (PM) Preparatory Modifica-
tion belonged to either S or PS; almost all of them qualified for S in Grade
8.

SUBSTITUTING A NUMBER IN AN EXPRESSION

The report on the results of interviews concerning Problem 2 is restricted
here to those aspects that shed a light on how the students understood
the identical equality in the transformation. Three possible features of
students’ responses to Problem 2 were considered. First is the Elementary
Understanding of Substitution (EUS) interpreted as substituting the given
number instead of the variable at each place where the variable appears and
including the number in the structure of operations. Second is the Correct
Substitution and Computations, which comprises EUS and, additionally,
performing correct computations. Third feature (independent of the above
two) is SSVE, Substituting (at least once, correctly or not) in the Simplified
Version of the Expression (g) or (h) rather than in the original one. In Grade
7, Problem 2 was correctly solved by 3 students only (out of 108); 5 students
did not attempt it. Nevertheless, 85% of students (90% of those who tried to
solve the problem) manifested EUS. Most errors concerned computations
on negative numbers, which caused serious troubles. Only about a quarter
of seventh graders manifested SSVE though it had been explained many
times in the classroom. The remaining students used the original version
(or did not attempt Problem 2).

During the interviews, the question: “Suppose you substitute the same
number x = �5 first in the original expression and then in your simplified
expression. Will you get the same value?” surprised many students. Sam-
ples: “I’ve never thought of this”, “I do not know if this would turn out the
same; I never tried ”, “No, why, there are different numbers and different
operations here and there”, “I don’t know, I substituted in the simplified
version because we did so during our lessons”. The reluctance of many
students to use the simplified version was conspicuous. The choice of the
simplified vesion in Test I was generally a consequence of the classroom
routine (“Our teacher always says we should substitute in the simplified
version”). In most cases (but not in all) this choice reflected the awareness
that the two substitutions (if no mistake was committed) must have given
the same number. On the other hand, some students knew that the results
should be the same and yet preferred the original version as safer.
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In Grade 8, only about 80% of students attempted to solve Problem 2
(significant decrease from Grade 7) but the number of those who solved
the problem correctly increased tenfold. EUS was evident in the work of
almost all students who started the problem. The increase of the number of
students who used the simplified version of the expression was considerable
(from about 25% in Test I to about 75% in Test II, i.e., to almost 90% of
those who attempted the problem).

CONCLUDING DISCUSSION

For the author, one of the most surprising results concerning Problem 1
was the presence of three groups of students (described above, labelled S,
PS, F), originally distinguished by their scores, that is, by the quantity of
errors, but differing – as it turned out – also in types of procedures (and in
numbers of different procedures used by the students) and in the kinds of
prevailing errors, that is, differing in qualitative features.

Comparing the results in Test I with those in Test II we get six major
patterns of the development of students’ performance, namely: passing
from S in Grade 7 to S in Grade 8; from PS to S; from PS to PS; from
PS to F; from F to F; and sporadically from F to PS. Only one student
dropped from S to PS. The remaining two possibilities (from S to F, from
F to S) were absent.

In Grade 7 students often used wrong rules, but many of them improved,
in a long process, and after 15 months used only correct rules. It was very
optimistic that three quarters of the most numerous group PS of Grade 7
(i.e., students with middle results), supported by careful and patient help
of the teacher, could master rudiments of transformations.

It was found that many students used procedures that had never been
shown during any lesson and were absent in their textbooks. Somehow
these spontaneous procedures were natural for them. Moreover, students
frequently referred to rules (often of their own invention), usually expressed
in the form of actions to be performed; formulas were rarely used.

The rules depended on students’ previous experience (particularly on
the kinds of tasks) as well as on their personalities and types of mind;
children taught together in the same class conceived diverse rules.

The most important finding of the study is the need for discriminating
between procedures of type (QR) Quasi-rules and incorrect procedures
of type (R) Rules. Both may result in the same error in a written test;
the crucial difference, which may be detected during a conversation with
the student, is that (R)-procedures are consistent, i.e., the student uses the
same procedure while transforming analogous expressions and, moreover,
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believes (or is even convinced) that the rule is the right one. In contrast to
the above, (QR)-procedures are not consistent, often formulated ad hoc,
and changed haphazardly. There is also an essential difference between the
prognostic values of the two types of procedures: most of the students who
used (R)-procedures, even erroneously, made progress and qualified for a
higher group while students who used (QR)-procedures were much more
likely to remain at a low level.

Results of the study seem to suggest that the emergence of incorrect
(R)-procedures may be a normal stage in students’ development. Many
students of medium abilities go through such a stage. Perhaps it is as normal
(and similarly surprising) as, e.g., the lack of conservation of the cardinal
number by 6-year-olds, a well known discovery of Piaget. If students are
helped to overcome the difficulties, they can progress and gradually learn
to use correct rules; if not, they are in danger of complete failure.

Students’ procedures did change during the 15 months separating the
tests (the change was partly caused by learning new transformations). In
particular, the frequency of procedures of type (C) Concretization, i.e.,
treating symbols as if they were concrete objects, decreased markedly.
At the same time, an increase of procedures of type (PM) Preparatory
Modification was conspicuous; they were directed towards grasping the
structure of the expression (e.g., replacing differences by sums with neg-
ative coefficients, replacing quotients by suitable products or fractions).
During the interviews, particularly in Grade 8, (PM)-procedures were used
by students fairly often and spontaneously. These procedures are poten-
tially very good, but they are unwarrantedly neglected by teachers and not
appreciated enough in textbooks.

Procedures of type (GS) Guessing-Substituting are of limited use when
a new kind of transformation is introduced. Their appropriateness and
didactical significance are doubtful when they serve as a justification for
the validity of a transformation. They could be more suitable for helping
children rectify an error; yet, the interviewees used (GS)-procedures main-
ly to ascertain certain forgotten details, e.g., a student hesitated whether
6x � 3x is 18x or 18x2 and checked which version was the right one. It
seems worthwhile to learn more about the possible advantages of such
procedures, particularly for fostering the understanding of the equality of
two expressions.

The type (R) Rules is heterogeneous and probably one could distin-
guish certain subtypes in it. The same remark applies to the types: (PM)
Preparatory Modification and (C) Concretization.
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Comparing the results concerning procedures with previous research

Observations made in this study confirm previous accounts (Booth, 1983–
84; Ćwik, 1984; Lee and Wheeler, 1989) of situations where students used
their own procedures rather than those taught in school. In particular, many
students referred to rules different from those explained and used in the
classroom and, moreover, often did not distinguish their own rules from
those shown by the teachers; some students even claimed that they had
learnt their wrong rules in school.

Correct rules invented by students are rarely described in print; specific
examples usually concern wrong rules, e.g.,

p
a+ b =

p
a+

p
b. If such an

error is mentioned in a paper, it is often difficult to figure out how to interpret
the child’s procedure: as Quasi-rules or incorrect Rules. The findings of
the study show that Krygowska’s statement quoted in ‘Background’ is
an oversimplification of the problem. They also contradict the opinion
of Fischbein (1994: p. 242) that in order to overcome errors (such as
wrong cancellation of an algebraic fraction) the student has to understand
the formal basis (definitions and theorems) that justifies algorithms. On
the other hand, the findings of the study agree with the conclusion of
Kirshner (1995) that successful students tend to go through a phase of
overgeneralizing distributivity before achieving fluency in manipulative
skill.

Procedures of type (C) Concretization identified in this study were
similar to those found in the British projects CSMS and SESM. However,
in contrast to the approach popular in England, the teachers of three classes
in the study (out of four) had not used this kind of explanation; most of the
children who argued this way did it spontaneously.

Lee and Wheeler (1989) noted that of the 268 students asked about
possible truth of an algebraic equality, only 10 made any attempt to ‘check
with numbers’, that is, to use some kind of Guessing-Substituting; a rule-
bound approach (correct or not) was more frequent. They also found that
the algebraic work was often considered by students on a par with a single
numeric example or (in a few cases) rather less reliable.

The role of basic properties of operations in learning transformations

In Polish textbooks (and also in many textbooks used in other countries),
the explanations of how to transform algebraic expressions most com-
monly refer to basic properties of operations. This should be contrasted
with the well-known fact that students learning rudiments of school alge-
bra encounter serious difficulties in applying these properties. Wierzbicki
(1970) examined results of nation-wide assessment of results concerning
a considerable sample of Polish seventh graders (one class of each of 490
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schools selected for the study); he reported that only less than a quarter
of students could identify the property of operations used by them in giv-
en transformations, while correct results were obtained by about half of
the students. Research of Skałuba (1988) has confirmed the known fact
that for many students, even in upper secondary school, application of an
identical equality (i.e., use of a procedure of type Formulas) is really hard.
Nevertheless, in several textbooks, properties of operations are explained
in terms of formulas only, without other arguments.

The main reason why the list of basic properties of operations is so stable
over years in various curricula is that, in fact, these properties are standard
axioms of a commutative ring with unit (or, if the additional postulate of
existence of division is included, one gets axioms of a field). Therefore these
properties are so natural and obvious for the average mathematician that it is
hard to conceive that they may be a cause of serious didactical difficulties
and need not be a good starting point for school algebra. It is not well
known that these axioms were not appreciated by mathematicians before
the 19th century. Advocates of the ‘new math’ movement in the 1960’s
stressed the importance of these properties for mathematics education (as
part of the program of developing thinking in terms of structures on sets);
yet, it should be noted that these axioms had appeared in curricula much
earlier.

The present study provides strong evidence that referring to basic prop-
erties of operations is not effective; the students were reluctant or not able
to make use of these properties. Only sporadically did students ever refer
to them. This feature is particularly striking when confronted with two
facts: (1) these basic properties are recommended by Polish curriculum
and appeared in the students’ textbooks, (2) the teachers who taught the
four classes in the study systematically explained and used these proper-
ties.

The role of geometric interpretation

In many countries (including Poland) school curricula advise teachers
to use well-known geometric interpretations of algebraic transformations,
e.g., the distributivity may be illustrated with suitable pictures of rectangles.
Some authors (Sawyer, 1964; Bruner, 1966; Ruthven, 1989) described how
to interpret quadratic polynomials with, e.g., wooden blocks: a small cube,
a ‘long’ (a rode) and a ‘flat’ (large cuboid with square base) represented
1, x and x2, respectively. Chalouch and Herscovics (cf. C. Kieran, 1989:
p. 43) tried to use similar representations to help children develop meaning
for expressions such as 2a+ 5a.
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In the present study only one interviewee (out of fifty) ever referred to
geometric interpretations, though they were present in their textbooks and
the teachers had used such arguments during lessons.

Correctness of the students’ procedures

While the result of a transformation of an algebraic expression is either
correct or erroneous, it is much more difficult to say something definite
about the correctness of the children’s procedures. Some of them obey
the requirements of rigorous thought and are unquestionable; some other
procedures are plainly wrong. However, most of the procedures cannot
be easily included in either category; they may be regarded as correct,
but cannot be called “performing the operations in accordance to strictly
applied rules”. This casts doubt on the adequacy of popular phrases such
as “proper mathematical methods” opposed to children’s own methods.
Dividing students’ procedures into two classes: “formal” and “intuitive”
is a false dichotomy (the former often connotes: “routine algorithm” or
“a school method”). Still worse is thinking in terms of the dichotomy of
“deriving complex transformations from the basic properties” and “prac-
ticing algebraic rules in a quite mechanical way”.

Procedures of type (C) Concretization may be regarded as intuitive ways
of explanation; they are of limited use but in the present study almost always
lead to correct results. Procedures of type (PM) Preparatory Modification
are mathematically sound, but usually served only as a preparatory step
before using another procedure. Correctness of a procedure of type (F)
Formulas can easily be judged by a mathematically competent person.
Correctness of a procedure of type (R) Rules is much harder to judge.

Procedures of type (GS) Guessing-Substituting appear groundless, fos-
tering bad habits, not compatible with correct mathematical reasoning.
Checking with one or two numbers is not a substitute for a proof that the
expressions are identically equal. Yet, one cannot say that such a procedure
is always incorrect; it is occasionally used by mathematicians when they
know the form of the target expression but coefficients are not certain.

Syntactic and semantic aspects of algebra

Many people believe that algebra should stem from arithmetic and that
rationale and justification of transformations of algebraic expressions should
be based on understanding analogous arithmetical transformations. The
findings of the study do not confirm this belief; the problem is much more
complex than such a simple statement.

Tall and Thomas (1991) and Gray and Tall (1993) pinpoint one of the
most significant aspects of the problem: those children who can interpret
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arithmetic symbols only as operations to be carried out are confused by
algebraic expressions such as 3a + 4b (see also Herscovics, 1989; Sfard
and Linchevski, 1994). Lee and Wheeler (1989) conclude their study with
a remark that the track leading from arithmetic to algebra is littered with
procedural, linguistic, conceptual and epistemological obstacles. They also
quote Filloy and Rojano as having suggested that the challenge of dealing
with the syntax of an unfamiliar algebraic language tends to destabilize
students’ semantic control of the familiar arithmetical language.

The significant problem of distinguishing semantic and syntactic aspects
of school algebra, considered by several authors (see, e.g., Kaput, 1989;
Booth, 1989), is only touched on in this paper.

Authors of books on abstract algebra point out that expressions (such
as, e.g., polynomials) may be viewed in two different ways.

First approach: One refers to the meaning of the expression regarded as
a function of a variable, say x. The letter x stands for an arbitrary number.
If a specific number is substituted instead of x, we get a number, called the
value of the expression at this specific x. Two algebraic expressions are
regarded as equal if their values are equal for each x (this definition has
to be suitably augmented to cover the cases where the domains of the two
expressions are different, e.g., because of zeros in a denominator).

Second approach: Algebraic expressions are considered as part of a
formal system (a ring of polynomials, say), satisfying certain axioms (basic
properties of operations). The meaning of an expression is not taken into
account. For instance, the letter x in a polynomial a0x

n
+ : : : + an has

no meaning; the only thing that matters is the sequence a0; : : : ; an of
coefficients and the way such sequences are added and multiplied. Two
expressions in such a formal system are regarded as equal if their equality
can be derived (in a number of steps) from the axioms.

The first of these two aspects of an algebraic expression, referring to
its meaning (based on the meaning of a variable as symbol of a number),
may be labelled as semantic. Put differently, the semantic aspect concerns
algebra understood as generalized arithmetic. The second aspect is syntac-
tic as it refers to the way the expressions can be manipulated according to
formal rules, regardless(4) of the meaning of the symbols.

Though children’s procedures are far from a scientific level of algebra,
we may trace semantic and syntactic features of five (out of seven) types of
procedures (such a distinction semantic-syntactic does not seem relevant
in the cases of the two extremes: (A) Automatization and (QR) Quasi-
rules, each for different reasons). Procedures of type (PM) Preparatory
Modification (particularly those of subtype Atomization) as well as proce-
dures of type (GS) Guessing-Substituting refer to the arithmetic meaning
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of the operations, and hence they have some semantic aspect. Type (C)
Concretization is semantic, but in a different sense. On the other hand, (F)
Formulas and (R) Rules appear rather syntactic.

A natural question concerns a possible correlation between (i) the stu-
dents’ achievements and (ii) dominant features (semantic or syntactic) of
their procedures. Some hints can be found in Diagrams 1 and 2. More
successful students used semantic procedures more frequently than those
less successful. Still, a comparison between frequencies of (F) Formulas
in Grade 8 suggests another answer: good command of algebraic transfor-
mations is more likely when the student uses procedures of diverse types.
Thus, some diversity of methods and some balance between semantic and
syntactic aspects of school algebra is desirable.

Didactical implications

Knowledge of childrens’ procedures identified in the study may be helpful
in the search for more effective ways of learning algebraic transformations:
mathematically sound and naturally accepted by students.

Teachers often observe that many students do not want anything but
rules. These students can – with difficulty – remember the rules; they
feel unequal to doing anything else. The postulate that students performing
transformations should be conscious of the meaning and appropriateness of
each step is convincing for mathematicians but the observations of students
in the most numerous, middle group PS in the study indicate that it is hard
to achieve. Their learning initially appears to follow a syntactic approach
(“do so and so”).

This should not be interpreted as advocating “skills before meaning”.
In fact, skills and meaning should somehow develop together and should
reinforce each other. Each student somehow constructs the meaning of
algebraic transformations, though it may be different from ours.

Construction of the child’s knowledge does not follow from deductive
reasoning, but from gathering experience, comparing results, generaliza-
tion (here is where their own rules are born) and revising (possibly refuting)
the previous rules. Constant verification of what the students do (enabling
them to detect erroneous assumptions) is crucial. The study shows that
explanations advised in curricula and books for teachers are not so effec-
tive as it is assumed. Conviction that a single very clear general exposition
will work is an illusion.

This does not imply that algebraic rules should be introduced without
much explanation. On the contrary, the teacher should use every oppor-
tunity for pertinent explanations; they should refer to the current work
of pupils, to their doubts, questioning, conceptions and misconceptions,
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errors, spontaneous generalizations. Learning algebraic transformations by
practising without attempt to generalize the children’s experience is futile.
Children cannot remember specific tasks, but can remember certain con-
clusions, especially those which surprised them by contrast to their prior
beliefs. Many students not only wanted to know rules but also strove to use
them in a correct and consistent way.

Transmitting algebraic rules by the teacher, memorizing them by stu-
dents and practising them in a mechanical way is worthless.

The students’ knowledge should be a result of suitable practicing; if
students are deprived of opportunity to gather experience, they lack pos-
sibility of forming a stable basis for further learning. Very important is
that the teacher should prepare sets of tasks of diverse types, suitable for
developing the prior knowledge of students.

It is wrong to tell children general rules without suitable previous expe-
rience. Equally wrong is practising without recapitulation, without com-
paring methods and contrasting different results. The most important is that
children construct rules themselves. These are not simply rules that teach-
ers try to transmit. Insisting that children refer to our rules, foreign to their
thinking (particularly, to basic properties of operations), is pointless.

NOTES

(1) A fuller report on the results of the study (including a detailed analysis of childrens’
errors and an a posteriori hierarchy of difficulties of items of the tests) was present-
ed as a Ph. D. Thesis “Rozwój procedur stosowanych przez uczniów klas V–VIII
przy przekształcaniu wyra_zeń algebraicznych” [Development of procedures used by
students of Grades 5–8 transforming algebraic expressions], Pedagogical University,
Cracow, 1994 (277 pages plus 144 pages of Appendix). Preliminary findings were
presented at ICME-7 in Quebec (Demby, 1992). The author is greatly indebted to
Professor Stefan Turnau, the supervisor of the Thesis, for his guidance, and to Pro-
fessor Zbigniew Semadeni from the University of Warsaw for his help in preparing
the English version of this article. Several persons have read the first draft of this
paper and made various suggestions; the author is particularly grateful to Prof. Milan
Hejný (Prague) and to Ms. Astrid Defence (Montreal) for their comments.
Research partially supported by Grant 2 1221 91 01 of KBN (Polish Committee for
Scientific Research).

(2) The quantitative data (percentages etc.) about procedures are not attempted here,
because of the difficulty in determining the exact type of procedure in some cases.
It is only mentioned whether – in various situations – certain types were prevailing
(that is, most frequent, predominant), or were frequent, sporadic, rare, absent.

(3) The bounds: 30% and 70% were based on an analysis of the diagram of frequencies
of the numbers of correct transformations obtained by all 108 students who had
written Test I (in particular, on an analysis of how these frequencies were grouped).
It was found out that these three groups of students were also characterized by the
prevailing kinds of students’ errors; this confirmed the choice of the bounds.
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(4) However, Thom (1973) has asserted that, in practice, for the mathematician every
statement that he/she is working with has some meaning regardless of how formally
it is presented.

REFERENCES

Booth, L.: 1981, ‘Child-methods in secondary mathematics’, Educational Studies in Math-
ematics 12, 29–41.

Booth, L.: 1983–84, ‘Children’s mathematical procedures’, Séminaire de didactique des
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średniej’, [‘Degenerate formalism in reasoning of certain students of secondary schools’],
Annales Societatis Mathematicae Polonae, series V: Dydaktyka Matematyki 3, 45–84.
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