General Frameworks for Mathematization and van Hiele Levels

ISODA, Masami Institute of Education University of Tsukuba

Key Questions and Contents

1. How does mathematical abstraction differ from other kinds of abstraction in its nature, in the way it develop?

How does mathematician develop mathematics?
How can we teach mathematics based on the processes?
2. How can we model the developmental processes for students?

For modeling the processes of abstraction;
Freudenhal's meanings of mathematization
General Framework of van Hiele Levels
Applying the model;
Levels of Functional thinking up to the Calculus
For Describing the Processes without Levels;
The processes of Mathematization from the view point of Mathematical Representation. of abstraction in its nature, in the way it develop?

Anna Sfard(1991)

A From the view point of progressive mathemaization, Gravemeijer \& Doorman (1999) descried;
A Freudenthal (1971) express the process of mathematization as 'the operational matter on one level becomes a subject matter on next level'. Although Freudenthal has micro levels in minds, a connection can be made with Sfard's(1991) more macroscopic account of mathematical development based on historical analyses.
A Freudenthal (1994) himself did not accepted the idea of progressive mathematization;
人 For a long time I have hesitated to accept the distinction of horizontal and vertical mathematization.
A And re-defined the progressive mathematization as his mathematizaion;
人 Horizontal mathematiz(s) action leads from the world of life to the world of symbols. In the world of life one lives, acts; in the other one symbols are shaped, reshaped, and manipulated, mechanically, comprehendingly, reflecting; this is vertical mathematization. The word of life is what is experienced as reality, as is symbol world with regard to its abstraction.
^ The distinction between horizontal and vertical mathematizing depends on the specific situation, the person involved and his environment. Apart from these generalities, examples on various levels are the best way to explain the difference between horizontal and vertical mathematizing.

A As soon as science outgrows mere collecting, it becomes involved in the organization of experiences. It is not difficult to indicate the experiences that should be organized in arithmetic and geometry. Organizing the reality with mathematical means is today called mathemtizing. The mathematician, however, is inclined to disregard reality as soon as the logical connection promises faster progress. A stock of mathematical experience is formed; it asks for its part to be organized. What kind of means will serve this purpose? Of curse, mathematical means again. This starts
Mathematics the mathematizing of mathematics

Freudenthal proposed Van Hiele Levels as general framework for mathematization in school mathematics;
The learning process is structured by levels. The activity of the lower level, that is the organizing activity by the means of this level, become an object of analysis on the higher level; The operational matter of the lower level becomes a subject matter on the next level.

1. Students explore matter (object) using figures (method).
2. Students explore the figures using the properties
3. Students explore the properties of figures using implication.
4. Students explore the proposition, which is formed by implication, using proof.
5. Students explore the proof, which formed by intuitive logic, using formal logic.

Generalization of van Hiele Levels Stoliar (1969), Hoffer (1983), etc.

Hoffer generalized the levels with the idea of Categories

1. Objects are the base elements of the study.
2. Object are properties that analyze the base elements.
3. Object are statements that relate the properties.
4. Object are partial orderings (sequences) of the statements.
5. Object are properties that analyze the partial orderings.
On the other hands, many general frameworks only focused on that the method of activity is the object of next activity and lost the idea of levels.
What kind of ideas were lost only focusing on it?

The ways to apply the generalized levels to other area in mathematics

1. We expect some areas as the conceptual domain for levels.
2. Tentative description of levels based on the analogy of the idea of levels is constructed; the method of activity is the object of next level.
3. Illustrating the levels with phylogenetic and ontogenesic evidences; comparing with historical development, analyzing the curriculum and students development based on the curriculum.
4. Confirming the features of van Hiele Levels to recognize the levels as van Hiele Levels.
A) Language Hierarchy. (van Hiele, 1959).
B) Existence of Un-translatable Conceptions. (van Hiele, 1986).
C) Duality of Object and Method. (van Hiele 1958; H. Freudenthal 1973; I. Hirabayashi 1978).
D) Mathematical Language and Student Thinking in Context. (van Hiele, 1958; M. Isoda, 1988; D.Clements, 1992; cf. M. Battista, 1994).

Generalization of van Hiele levels from

Geometry to Calculus

Levels of Function up to Calculus; Level 1 and Level 2 Language Hierarchy. Existence of Un-translatable Concepts. Duality of Object and Method.

Level 1
Ev e ryd ay Langu age

$\frac{\text { Ex a mpl e }}{\frac{o f}{}}$
$\frac{\text { confli cts }}{\text { between }}$
$\frac{\text { a evel }}{\text { Le }}$
$\frac{2}{2}$

Stud ents
explor e
phen em ena
(objects)
using
imm a tu re
relation s or
v aria tion
(m ethod).

Stud ent s describe relation s in real world phenom ena using everyd ay. langu age imm aturel y. Th ey can discuss chang es in numb ers using calcul ation s, but usual ly their descrip tions are don e with or fo cused on on e phy sic ally e vid ent variable, the depend ent variable. Even if they are aw are of cova riation, it is di fficult for them to expl a in it appropri a tely using two variables because the ir descrip tions of relation s are don e imm aturely using everyd ay langu age. So it is di fficult for them to comp are di fferent In Jap anese, we use "2 BA I, 3 BA I" to mean "two tim es, thr ee tim es " on level2. But in everyd ay Jap anese (level1), Jap anese use "B AI " to m ea n any of "doubl e", "plus " or Omor eO. Eg. OH ito (person) Ich Bai (on e tim e) Óm ea ns Òmor e than oth er personO or Otwo tim es th e oth er personÓ in Jap anese usag e. A child on levell say s"BAI, BA I" ("plu s, plu $s^{\prime \prime}$) to mean thr ee tim es the orig inal a mount. But some studen ts think "BAI, BA I" ("doubl e, doubl $e^{\prime \prime}$) m ea ns fou r tim es. On the oth er hand, at level 2 , studen ts have to use " 2 BA I, 3 BA I" to e xpl a in propo rtion as a cova riance and they say thr ee tim es as "3 BA I", not as "B AI, BA I".

Stud ent s e xplor e relatio ns using rule s. Th e ob ject on Level 2 wa s th e me thod on Level 1 .

Levels of Function up to Calculus; Level 2 and Level 3
Language Hierarchy.
Existence of Un-translatable Concepts.

Duality of Object and Method.

Level 2. Arithmetic Language	Students explore relations using rules. The object on Level 2 was the method on Level 1.	Students describe the rules for relations using tables. They make and explore tables with arithmetic. Their descriptions of relations in phenomena are more precise with tables than just with the everyday language of level 1. Students have general concepts about some relations, for instance, proportion. Students can compare different phenomena using such rules. They describe rules for relations as covariation and when reading tables, their interpretation of the covariation of variables is at least as strong as their interpretation of correspondence. Students begin to use algebraic formulas and graphs to represent rules and relations in phenomena but it is difficult for them to translate between notations without any phenomena.

Example of conflicts

Level 3

Algebraic
or
Geometric
Language

Students explore rules using function notation.

Students describe functions using equations and graphs. To explore functions, even where there is no reference to real world phenomena, they translate among the notations of tables, equations and graphs and use algebra and geometry. At this level, their notion of function, which they already understand well, involves the representation of different notations already integrated as a mental image. For example, they can easily find the equation corresponding to a graph, and a 'constant' means no relation in the phenomena on level 2 because students on level 2 try to find a relation of covariational change in the phenomena.

Language Hierarchy.

Existence of Un-translatable Concepts.
Duality of Object and Method.

Different ways of thinking between Level 1 and Level 2

Isoda, 1989

Problem 1 In the right table, if y is in proportion to x , then select the pair which is appropriate for P and Q in the table.

Different ways of thinking between _evel 2 and Level 3

Isoda, 1989
Problem 3. Write what you can find from the following tables.
(1)

x	1	2	3	4
y	4	8	12	16

(2)

Result of (1)

Grade	6	7	8	9
Covariation	42%	48%	49%	35%
Correspondence	24%	14%	16%	35%
Both	8%	10%	11%	11%

Result of (2)

Grade	6	7	8	9
Covariation	27%	15%	11%	10%
Correspondence	37%	21%	20%	50%
Both	0	0	2%	3%

Implications

Illustrating the differences based on the difference of language;

Level. 4

Problem 1. If we define the growth of a microorganism as proportional to the amount X of a fungus at time t, find the differential equation.

$\mathrm{dx} / \mathrm{dt}=\mathrm{kx}$

Problem 2. If we define the growth of a microorganism as proportional to the amount X of a fungus at time t and at the same time as proportionally decreasing depending on how 'close' to a maximum quantity Xmax it reaches, find the differential equation.

$$
\mathrm{dx} / \mathrm{dt}=\mathrm{kx}(1-\mathrm{x} / \mathrm{xmax})
$$

Level. 2

Grade 6 \begin{tabular}{|l|l|l|l|l|}
\hline$\frac{\text { Size }(\mathrm{m})}{}$ \& 1 \& 2 \& \cdots \& z

$\mathrm{Value}(\mathrm{Yen})$ \& 50 \& | From arrows, |
| ---: |
| $50 \times x=y$ |
| or |
| $x \times 50=y$ |

\hline
\end{tabular}

Grade 7 | Size xm | 1 | 2 | \ldots | y |
| :--- | :--- | :--- | :--- | :--- |
| | Value y Yen | 50 | 100 | \ldots |

Level. 3

Implications

Illustrating the difficulties based on the levels;

Why the Achievement of both problems are very low? What are differences?

Time elapsed

Time elapsed

Time elapsed

Mathematical Representation

(ISODA 1991)
Elements of mathematical representation in thinking processes;
Symbol, Operation and Aim(or Context)
Mathematical Representation as notation system;

$$
\begin{array}{rlrl}
3 x & =6 & 2 x+3 & =5 x-3 \\
2 x+3 & =5 x-3 & 3 x & =6 \\
x & =2 & x & =2
\end{array}
$$

Symbol, Operation and Aim(or Context)
Representation is a element of Representation System; R(Symbol,Operation), Representation World is an Integrated Representation Systems depending on the situations or problems; $\mathrm{W}=\{\mathrm{Ri}(\mathrm{Si}, \mathrm{Oi}) \longleftrightarrow \mathrm{Rk}(\mathrm{Sk}, \mathrm{Ok}) ; \ldots .$.
Problem. There is a rectangler that the width is 3 cm longer than the lengthwidth. We make another rectangler whose width is three times as long as the width of the based rectagler and whose lengthwidth is two times as long as the lengthwidth of the based rectagler. Then, the perimeter of the made rectagler is 10 cm longer than two times as large as the perimeter of the based rectangler. How long is the perimeter of the based rectangler?

Problem. There is a rectangler that the width is 3 cm longer than the lengthwidth. We make another rectangler whose width is three times as long as the width of the based rectagler and whose lengthwidth is two times as long as the lengthwidth of the based rectagler. Then, the perimeter of the made rectagler is 10 cm longer than two times as large as the perimeter of the based rectangler. How long is the perimeter of the based rectangler?
width x , lengthwidth $\mathrm{x}-3$
$3 \mathrm{x} \quad 2(\mathrm{x}-3)$
$2\{3 x+2(x-3)\}=2(x-3)+10$
Then, $x=5 / 3$?
Width $x+3$, lengthwidth x $3 x+9 \quad 2 x$
$2(5 x+9)=2\{2(2 x+3)\}+10$
Then, $x=2$
$2(2 x+3) 14$, Ans. 14 cm

Nature of Mathematization from the viewpoint ot Representation; From Non-Operational to Operational Representation

Reasoning with image based on oneÕs experience
Problem and experience (at Real Word or Existent Level)

$2(\mathrm{X}+3)=10$
Solvable Problem Structure Reasoning with the mathematical structure and the mechanical structure (Synchronization in

Modeling the processes of Mathematization from the view point of Mathematical Representation ISODA, 1991

Ordinary Representation World; "In the world of life one lives, acts" Reasoning with the image based on one's experience at Real Word or Existent Level Reasoning with ordinal representation. New representation is introduced with the translation of ordinal representation. It could be operated with the translation of ordinal representation and it does not have autonomy as representation.
In the process of mathematization in the context of developing operation for new representation, autonomy as representation, following mutual interactive activity is ongoing;
Reasoning but focused on the special structure at Real Word or Existent Level
The representation which could be translated to the new representation is focused because of necessary to develop the operation of new representation.
Developing the Reasoning with the mathematical representation without the special structure at Real Word or Existent Level
The operation of new representation is developed with the translation of focused representation.
Alternative Representation World; "In the world of life one lives, acts"
Reasoning with the mathematical structure with Synchronization in Alternative Mathematical World or Level
After the development of the operation of new representation, the representation is used autonomicaly and the alternative representation world is integrated with it.

A Case Study; Applying the model of Representation Explore the Motion of Crank Mechanism

A 4 hours in high school, 9 female students who know trigonometric functions, group activity.
A The example illustrate the difficulty to develop synchronization. In the process of mathematization in the context of developing operation for new representation, autonomy as representation, following mutual interactive activity is ongoing;
Reasoning but focused on the special structure at Real Word or Existent Level
The representation which could be translated to the new representation is focused because of necessary to develop the operation of new representation.
Developing the Reasoning with the mathematical representation without the special structure at Real Word or Existent Level
The operation of new representation is developed with the translation of focused representation.
Alternative Representation World; "In the world of life one lives, acts"
Reasoning with the mathematical structure with Synchronization in Alternative Mathematical World or Level
After the development of the operation of new representation, the representation is used autonomicaly and the alternative representation world is specified on the situations and integrated with it.

In a Daily Context; Reasoning with Visual Image Based on One's Experience

How does the wooden-horse of merry-go-round move?

Students do not understand how the circle motion produces an up-and-down motion.
A Make the mechanics by LEGO which could represent the motion of wooden-horse.

Students could construct only the separate parts.

A Their images are too far from the cognitive structure to formulate the mathematical model

Conflict between Visual Image and the Locus by the Mechanics; Getting Structure of Mechanics Beyond Visualized Materials

- Students made their crank using a sample by Teacher.

Students imaged that the locus of wooden-horse must be circle. They were still reasoning with their visual images and could not reason with mechanical structure even if they made the mechanics.

- Students drew loci using the crank.
'I wonder that upper side is circle, but bottom side is a pressed oval and the height is same.'
-Students can over come misunderstanding by

Formation of the Mathematical Model and Interpretations

Reasoning via Mathematical Model with Weak Mechanical Structure

- Students were asked to represent mathematically the up-and-down motion of the crank's piston, endpoint A, as an extreme case of the locus as the pressed ovals

Students couldn't solve and teacher helped them.

$f(\theta)=\mathrm{OA}=\mathrm{rcos} \theta+\sqrt{\mathrm{L}^{2}-4 \sin ^{2} \theta}$

Teacher asked students to explore the meaning of the function with graphic calculator.
\searrow Students compared the up-and-down motion of the piston via the LEGO crank with the graph of the function. "If the piston moves up, the cogwheel rotate right. And if the piston moves down, bar moves also down."
QIt looks like they could success mathematical 23

Changing the parameters of model did not mean changing the parts of mechanics Knowing the correspondence between the parameters of mathematical model and the parts of mechanical structure.

A Students explore the mathematical model with graphic calculator through making a lot of problems via changing the parameters of function.

Ratio	1) $r: L=1: 3$	2) $r: L=1: 1$	3) $r: L=3: 1$
Graphs			

From the case 2\&3, students thought that the equation is wrong.
A Students tried to reproduce the case $2 \& 3$ by LEGO.
' If we apply the conditions of 2) or 3) to the wooden-horse will hit the cogwheel. These conditions are not appropriate for the crank mechanism. The length of L should be longer than of r for the crank (?)'

Illustrating the model with the example from LEGO project

The Model of The processes of Mathematization from the view point of Mathematical Representation

Significances and Restrictions

The Model illustrates the process of abstraction.

Reflective abstraction consists in deriving from a system of actions or operations at a lower level, certain characteristics whose reflection (in the quasi-physical sense of the term) upon actions or operations of a higher level it guarantees.
Reflective abstraction proceeds by reconstructions which transcend, while integrating, previous construction (Piaget, 1966)

The Model illustrates the abstraction is not normative.

Alternative representation world is restricted on the special situations and not always abstract in normative meanings.

The Model restricted the meaning of levels.

A) From Language Hierarchy to The different worlds of Mathematical Representation.
B) Existence of Un-translatable Concepts.
C) Duality of Object and Method.
D) Mathematical Language and Student Thinking in Contex ${ }^{2}$?

Related Articles written in English

A Isoda, M.(1996), The Development of Language about Function: An Application of van Hiele's Levels, Edited by Luis Puig and Angel Gutierrez, Proceedings of the 20th Conference of the International Group for the Psychology of Mathematics Education, Volume 3,105-112
A Isoda, M., Matsuzaki, A., (1999), Mathematical Modeling in the Inquiry of Linkages Using LEGO and Graphic Calculator: Does New Technology Alternate Old Technology?, Edited by W. Yang, D. Wang, S. Chu \& G. Fitz-Gerald, Proceedings of the Forth Asian Technology Conference in Mathematics, ATCM Inc. USA, 113-122
A Isoda, M., (2001), Synchronization of Algebraic Notations and Real World Situations fromthe Viewpoint of Levels of Language for Functional Representation, edited by Chick, H., Vincent, J., Stacy, K., The Future of the Teaching and Learning of Algebra: Preproceedings of the 12th ICMI conference, vol.1,

