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Symbolic Reasoning

A Historical Note

During the nineteenth century an enormous amount of work was done in England in differential

and difference calculus using a technique called “operational method”.  In this method, results are

obtained by symbol manipulations without understanding their mathematical justification, and in

many cases they even violated well established mathematical rules.  For example, in this method

the Euler-MacLaurin summation formula for approximating integrals by sums1 is derived by taking

the logarithm of a general real-valued function, with no regard to the negative values the function

may assume (see, Friedman, 1991; pp. 176-178).  It is only with the aid of functional analysis,

which emerged early in the twentieth century, that mathematician were able to justify many of the

operational method techniques.

This is an example of    symbolic       reasoning    , a reasoning in which symbols are treated as if

they possess a life of their own, and, accordingly, are manipulated without mental representations

involving quantitative and spatial images.  

Undoubtedly, symbolic reasoning plays a significant role in the development of

mathematics.  One might argue, for example, that the reconstruction of Calculus into Real Analysis

at the beginning of the nineteenth century was chiefly a result of Fourier’s “symbolic solution” to
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the flow of heat problem.  As it is known, Fourier had reduced this problem to that of taking an

even function and expressing it as an infinite sum of cosines, without attending the meaning of

infinite summation of functions.  His solution led to observations which seemed at the time

inconsistent with “regular” behavior of functions.2  This, in turn, led to thorough investigations

into the assumptions of calculus and inspections of its structure, whereby the entire Calculus was

reconstructed into a new mathematical field: Analysis (see Bressoud, 1994).  

Apparently, symbolic reasoning has its origin in the nineteenth-century mathematics

curricula as well.  Consider, for example, Euler’s textbook on multiplication of integers:  

Hitherto we have considered only positive numbers; and there can be no doubt, but that the

products which we have seen arise are positive also: viz. +a by +b must necessarily give

+ab.  But we must separately examine what the multiplication of +a by -b, and of  -a by -b

will produce.  Let us begin by multiplying -a by 3 or +3.  Now, since -a may be considered

as a debt, it is evident that if we take that debt three times, it must thus become three times

greater, and consequently the required product is -3a.  So if we multiply -a by +b, we shall

obtain -ba, or, which the same thing, -ab.  Hence we conclude, that if a positive quantity be

multiplied by a negative quantity, the product will be negative; and it may be laid down as a

rule, that + by + makes + or     plus   ; and on the contrary, + by -, or - by +, gives - or      minus   .

It remains to resolve the case in which -  is multiplied by  -; or, for example, -a by -b.  It is

evident, at first sight, with regard to the letters, that the product will be ab; but it is doubtful

whether the sign +, or the sign -, is to be placed before it; all we know is, that it must be

one or the other of these signs.  Now, I say that it cannot be the sign -; for -a by + b gives -

ab, and -a by -b cannot produce the same result as -a by +b; but must produce a contrary

result, that is to say, +ab; consequently, we have the following rule: - multiplied by -

produces +, that is the same as + multiplied by +

                                                
2 For example, when Fourier expansion of f (x) = 1 , −1 ≤ x ≤1 , is differentiated term by term, the resulted
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Thus, Euler’s rule for the sign of “- multiplied by -” was based on symbolic consistency needs

rather than quantity-based considerations.  In contrast, his derivation of the rule for the sign of “+

multiplied by - and - multiplied by +” was based on quantitative imagery representations.

Students reasoning symbolically

Despite the important role symbolic reasoning plays in mathematics research, its application in

school mathematics, especially in the elementary mathematics curricula, can block students’

mathematical development.  As the following examples demonstrate, the most serious deficiency in

our students’ mathematical knowledge is the inability to reason mathematically about situations.  In

recent teaching experiments on the concept of mathematical proof (Harel and Sowder, in press), it

was observed that students’ reliance on symbolic reasoning is so ultimate that they are unable to

attend the meaning of basic concepts they have learned previously.  For example, students in their

second course in linear algebra employed meaningless symbol manipulations to the problem

“Prove Null(A) ⊆ Null(BA) ” and were unable to express the statement “ x is in Null( A)”

algebraically (i.e., by the equality Ax = 0).  Further, in many cases college students are unable to

reason situationally even about elementary and basic concepts from high-school mathematics.  The

following example demonstrates this inability, and it, by no means, represents an exceptional

event:  

Patti’s solution to a certain homework problem on limits of functions included the

inequality (x −1)2 > 1.  Her solution to this inequality was x > 1.  When she was asked to explain

how she arrived at this solution, she responded:

The solution to the equation (x −1)(x −1) = 0  is x = 1, x = 1 (She wrote down these three

equalities).

Then she crossed out the three equality sings, wrote above them the inequality sign as follows:

(x −1)(x −1)=
>
0 is x =

>
1, x =

>
1,

                                                                                                                                                            
series does not converge, which was against the mathematician’s expectations.
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and said:

x is greater than one.

Following this, Patti was asked to solve (x −1)(x −1) = 3; she wrote:

 (x −1) = 3, (x − 1) = 3

Patti’s mathematical behavior suggests that she was not thinking about the situations that these

strings of symbols may represent; rather, the strings themselves were the situations she was

reasoning about.  That is, Patti’s thinking was in terms of a symbolic, superficial structure shared

by the three strings, not in terms of the quantitative, functional, or spatial relationships they may

represent.  From her perspective, these strings share the same symbolic structure and, therefore,

the same solution method must be applicable to them all.  Patti viewed each of these strings of

symbols as a call for activating a certain procedure; namely, for her, the equality (x − a)(x − b) = c

calls for the application of the procedure x − a = c, x − b = c,  x = c + a,  x = c + b .

Because Patti’s thinking was not based in situational images, she was unable to understand

the teacher’s view of these strings as representations of conditions that determine subsets of real

numbers.  Patti’s conception of the problem at hand and its solution were, obviously, very

different from what teachers usually assume they are communicating with their students.

Symbolic reasoning is a habit of mind students acquire during their school years, from

elementary school to secondary and post secondary school.  This habit of mind is very persistent

and extremely difficult to relinquish.  Below are solutions to a problem given at the end of a

teaching experiment in which a major effort was made to reeducate the students to reason

situationally.  The problem was:

a  and b  are integers and c  is an integer different from zero.  Which of the following

statement(s) is (are) true?

(i) a = b(mod m) ⇒  ac = bc (mod m).
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(ii) If a = b(mod m) ⇒  
a

c
=

b

c
(mod m) .

Karri’s solution to (ii):

a

c

.c

−
b

c

.c

=(modm).c ⇒ a−b=c(modm) .  The only thing that changes are the number of m

terms being multiplied.

Kathy’s solution to (i):

True.  If a = b(mod m)  then ac = bc (mod m).  From the statement above we know that a

and b  are congruent.  So a = x (mod m) and b = x(mod m) .  Multiplying both by c , you

get ac = cx (mod m)  [and] bc = cx (mod m) .  Both are still congruent and can be written

[as] ac = bc (mod m).

Karri and Kathy’s solutions are another example of a reasoning that is not based in

situational images.  Although these students realize that the content of these symbols is the domain

of integers, they have not created a coherent network of quantitative relations and operations that

correspond to the symbols and their manipulations.  For these students, the symbol manipulation

rules they acquired in their school years define the essence of their world of mathematical activities

and mathematical truth.  Image making and quantitative comprehension are virtually absent from

their world of mathematics.  Thus, the action of multiplying two sides of an equality by a number--

a well practiced activity in algebra courses--constitutes the entire solution process applied by Karri;

they raised no questions about the meaning  of this rule in the context of module arithmetic.

Symbolic reasoning versus transformational reasoning:

The case of elementary Mathematics.

The dominance of symbolic reasoning in the elementary school mathematics curricula has well

documented in the mathematics education literature.  Students’ error pattern in carrying out

arithmetic operations is an example of the effect symbolic reasoning has on elementary-school

students’ mathematical behavior.  However, symbolic reasoning is usually associated with
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manipulation with symbols in mathematical expressions, such as those we have seen earlier with

college students, or such as the Cross Multiplication Formula (e.g., 
4

5
<

5

6
 because 4• 6 < 5• 5)

commonly used by elementary school students.  It is important to point out that symbolic reasoning

is not restricted to this kind of symbol manipulation.  Consider, for example, the Conservation

Formula (Harel, 1995) commonly taught in elementary school before children build the conception

that solutions of multiplicative problems are invariant under changes of the problem quantities.

This Conservation Formula states:

When you encounter a word problem with “nasty” numbers,

(a) replace the “nasty” numbers with “friendly” numbers;

(b) solve the problem with the “friendly” numbers;  

(c) transform back your solution to the problem with the “nasty” numbers.

For example, using the Conservation Formula, one can “solve” the problem “A cheese

weighs 0.923 kg.  1 kg costs 27.50 kr.  Find out the price of the cheese” by:

(a) replacing  the multiplier, 0.923 kg, with a “friendly” multiplier, say 4 kg;

(b) solve the problem with the new multiplier by the operation 4x27.50;

(c) transform this operation into 0.923x27.50 (by replacing 4 by 0.923), which will be

your solution for the original problem.

The mathematical behavior students adopts from learning solution strategies such as the

Conservation Formula in elementary mathematics is consistent with the mathematical behavior we

observe later with secondary and post secondary students.  The Conservation Formula is an

example of computation-centered school mathematics curricula, low demand for meaning and

reasoning, and superficial considerations children employ in solving problems.

Transformational reasoning, in contrast to symbolic reasoning, involves operations on

objects and anticipations of the operations’ results.  The operations are goal oriented, and they may

be carried out for the purpose of leaving certain relationships unchanged, but when a change
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occurs, the observer not only anticipates it, but also knows what operation to apply to compensate

for the change.

Against the Conservation Formula as a manifestation of symbolic reasoning, we bring an

excerpt of an interview with two children, which demonstrates transformational reasoning in

solving a multiplicative problem.  This is an interview conducted simultaneously with two

children, a 13-year-old girl, Tami, and an 8-year-old boy, Dan, and was reported and fully

analyzed in Harel (1995).  It demonstrates how children can reason trasformationally before they

have learned that solutions of multiplicative problems are invariant under change of quantities.

Interviewer:  One pound of candy cost $7.  How much would 3 pounds of candy cost?

Tami:  Three times seven, 21.

Dan:  I agree, three times seven.

Interviewer:  What if I changed the 3 into 0.31?  What if the problem were:  One pound of

candy cost $7; how much would 0.31 of a pound cost?

Tami:  The same.  It is the same problem, you have just changed the number.  0.31 times

7.

Dan:  No way!  It isn’t the same.  Can’t be (angrily).  It isn’t times.  How did you

(speaking to the interviewer) agree with her?

Interviewer:  I didn’t agree with her, I’m just listening to both of you.  How would you

solve the problem?

Dan:  (After a short pause), you take 1 and you divide by 0.31.  You take that number,

whatever that number is, and you divide 7 by that number.

Dan’s solution consisted of a plan for what should be executed to obtain the problem

answer, and the entire executability of the plan was fully anticipated.

Characteristics of Algebraic Reasoning and The Effect of Symbolic Reasoning
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We now focus on characteristics of algebraic reasoning and the consequences of symbolic

reasoning to its development.  In our view, two of the strongest characteristics of algebraic

reasoning are:

a.      The        Quantity        Representation        Characteris      tic   

The ability to think in terms of representations of measurements of quantities (not just in

terms the measurements themselves) and in terms of representations of quantities (not just

in terms the quantities themselves).  

b.      The        Operative        Algebraic        Th        ought        Characteristic   

The ability to operate on the outcome of an operation without quantitatively evaluating the

outcome.

We will discuss these characteristics in the context of the multiplicative conceptual field.

Our basic point is that multiplicative reasoning serves as a corridor to and spring board for

algebraic reasoning, in the sense of these two characteristics.  For this, let us consider the concepts

or ratio--the single most important concept that defines mutiplicativity.  

Kaput and Maxwell-West (1995) and Thompson (1995) distinguished among several levels

of ratio conceptions, a distinction that is not based upon situations but on the mental operations by

which people constitute multiplicative situations.  According to Thompson, for example, the three

conceptual levels of ratio are as follows:  

In the first level, ratio is where the multiplicative relationship is conceived as being between

two    specific   , non-varying quantities.  For example, as a ratio, a per-statement such as “3 cups of

orange concentrate per 4 cups of water” is conceived as “a comparison of the two collections     per

se   ,  or a comparison of one as measured by the other” (Thompson, 1994, p. ??).  

In the second level, which Thompson calls “internalized ratio”, ratio is where the result of

the relationship is fixed as well as the quantities being related, but the values of the related

quantities vary” (multiplicatively).  Continuing with the same example, this per-statement would be
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conceived under this conception as a representative of    all    ratios between two collections of the

same        quantities   --cups of orange concentrate and cups of water--where the values of the collections

vary multiplicatively (e.g., from “3 cups of orange concentrate per 4 cups of water” to “6 cups of

orange concentrate per 8 cups of water”, etc.).  Thus, a child who conceives, for example, the

quantity of “taste” as an internalized-ratio would understand that a mixture with 40 ounces of water

and 24 ounces of orange concentrate will taste the same as any other mixture with 40Xn ounces of

water and 24Xn ounces of orange concentrate:  By necessity, this child must think in terms a

representation of quantity’s measurements, rather than specific measurements.  

Finally, in the third level, which Thompson calls “interiorized ratio”, ratio is where the

quantities themselves vary.  For example, the ratio a : b  represents a multiplicative relationship

between    any     measurements of    any     quantities.

This short analysis demonstrates how multiplicativity provides rich and natural context for

developing algebraic reasoning, in the sense of the quantity representation characteristic.  In what

follows we will discuss how through multiplicative situations students learn to reason

algebraically, in the sense of the operative algebraic thought characteristic.  As an example of this

ability, consider again Dan’s solution.  Recall this solution did not include any actual computation;

it consisted only of a plan for what should be executed to obtain the problem answer.  The plan

being: “You take 1 and you divide by 0.31.  You take that number, WHATEVER THAT

NUMBER IS, and you divide 7 by that number.”  So Dan was able to operate on the outcome of

the operation of dividing 1 by 0.31 without obtaining the actual value of the outcome.  This way of

thinking is indispensable in algebra, and constitutes the conceptual foundations for the concept of

function.  

As a teacher, I first observed the non-immediacy of the development of operative algebraic

thought when I taught linear equations to junior-high school students.  This observation is unlikely

to be made if students are taught to solve equations symbolically (instrumentally, that is; such as,
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to solve 5x +12 = 17, move the 12  to the right-hand side and divide by 5).  I introduced the idea

of solving an equation as a search for a number that satisfies the condition defined by the equation.

In the process of teaching solution of equations, I noticed that with the exception of a few students,

most of my students were unable to perform the intermediate stage of thinking of 5x  as a number

which when is added to 12  results in 17 ; they could search for x  but not for 5x .  In my opinion,

students’ difficulty lies in their inability to operate (adding 12 ) on an outcome of an operation

whose value has yet to be determined.  This is an epistemological obstacle--a natural developmental

difficulty, that is--that signifies the beginning conception of algebraic reasoning.  If this obstacle is

avoided by providing the students with a symbolic tool to solve equations, the birth of algebraic

reasoning is likely to be postponed or killed altogether.

The idea of a “pattern” is another example where operative algebraic thought is required.

To identify the general pattern of the sequence:

1 → 1, 2 → 3 3 → 5, 4 → 7, 5 → 9    

and predict the outcome of any given integer, one must be able to perform the operations of

multiplication (2n) and subtraction (2n −1) without carrying out the operations themselves. Ratio

and proportion problems provide a natural context for developing this way of reasoning, for the

notion of ratio, in the second and third levels discussed above, requires one to reason about the

multiplicative relation between quantities without necessarily computing the relation itself.

Symbolic reasoning, we argue, deprives students from the opportunity to engage in these ways of

reasoning about multiplicative problems and, therefore, blocks students from developing algebraic

reasoning.  This is so, because, as it has been established by Piaget and others, the main tool for

modifying existing conceptions is true problem-solving activities, where the learner applies

existing conceptions to solve the problems and modifies these conceptions when encountering

cognitive conflicts.  The use of the Conservation Formula and Cross Multiplication Formula, for

example, sterilizes these conflicts and gives both the child and the teacher the illusion of
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accomplishment, where in fact the child is     not    experiencing any problematic situations that can

bring her or him to invent ways of thinking multiplicatively.

Implications

We argue, therefore, that instructional activities that educate students to reason about situations in

terms of transformations and compensations are crucial to students’ mathematical development,

and they must begin in an early age: kindergarten and first grade.  Their reasoning at this stage is

pre-notational unless invented by them.  The following examples (brought up by the Quantitative

Reasoning Group3) demonstrate the type of activities in early grades that can potentially promote

reasoning about quantities and their relationships:

1.  Your plant is taller than my plant.  Your plant grew more (less; same) as mine.  What

could the situation be?

2.  Allan is faster than Elliot in September.  They both got faster.  Who would win a race in

December?

3.  At table 1, 3 children share 3 cookies.  At table 2, 4 children share 5 cookies.  Is that

fair?

4.  Count how many of these small boxes it would take to fill the large box

<Insert Figure 1  ??>

∑  If you tried to fill the large box with small boxes that were twice as big (small), how

many would it take?

∑  If you tried to use the small boxes to fill a larger box that was twice as big (small), how

many would it take?

5.  This scale is in balance.

                                                
3  The members of the Quantitative Reasoning Group were James Kaput, Richard Lesh, Pat Thompson, Randy
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<Insert Figure 2 ??>

∑  If you replaced the blocks on the right with a block twice as heavy, how many would it

take to balance?

∑  If you replaced each block on the left with a block twice as heavy, and you replaced

each block on the right with a block twice as heavy, what would happen?

∑  If you replaced the block on the left with a block twice as heavy, what would happen?

The notions of "heightens", "muchness", "fastness", "loudness", "fullness", and heaviness

are examples of qualities.  A quality in the empirical level is an action of actual experience, such as

the feeling that results from walking fast, or the sense by which the flavor or savor of things is

perceived when they are brought into contact with the tongue.  At the operative level, quality is an

anticipatory scheme--a scheme that leads to an answer before the details are filled in by the action

during the actual process of arriving at it (Piaget, 1967).  With this scheme, one compares between

results of an experiential action without carrying out the actual action--a necessary mental operation

in transformational reasoning.  To reason about the problems described above one must have

developed the qualities of height, fastness, heaviness, etc., at the operative level.  Conversely,

these type of activities are needed to develop this level of thought.

We conclude with what we believe two of the most important intellectual activities in

reasoning about qualities:      quantification    --the process of assigning measures to qualities (see

Thompson, 1994) and     geometrization    --the process of spatial imagery construction and

organization.  The importance of these processes is (at least) two-fold.  

Scientific reasoning.

Through the quantification process students reason about    specific    quantities (speed, heat, etc.) and

investigate relationships among them--an activity that constitutes the heart of physical sciences.  It

                                                                                                                                                            
Philip, Judy Sowder, Ricardo Nemirosvsky, and myself.
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is through quantitative reasoning that students build concept images of the specific quantities they

reason about--images that are instrumental in understanding “theoretical” mathematical phenomena.

As an example of this assertion, consider the quantity of speed in relation to the Fundamental

Theorem of Calculus, and the quantity of heat in relation to properties of harmonic functions (most

notably, the property that the extreme values of a harmonic function must be on the boundary of its

domain).  Similarly, spatial imageries--such as mutual positions of lines and planes in space--are

indispensable to the understanding of linear algebra and multivariate calculus.  

Imagery building for comprehension.

By reasoning quantitatively and geometrically, students learn the process of mathematics

comprehension.  That is, they learn that sense making and image building, not symbol

manipulation, are the heart and sole of mathematical activity.  For this, instructional activities must

be designed for the purpose of fostering reflection and abstraction of the mathematical concepts we

intend to teach our students.  For example, multi-digit addition and subtraction problems should be

introduced in a context that is experientially concrete to students--the context of money, for

example.  Students learn that in order to deal with the problems successfully, they must

comprehend the situation quantitatively, and, in the absence of formal algorithms to solve these

problem, they develop their own solutions.  Their algorithms may be quite different from the

standards ones, but when the latter are introduced, they would have the conceptual tools to

comprehend them and make them their own.
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